Script generated by TTT

Title: Seidl: Programmoptimierung (04.12.2013)
Date: Wed Dec 04 08:32:32 CET 2013

Duration: 87:34 min

Theorem

Let x; J fi(x1,...,7,), ©¢=1,....n denote aconstraint system
over the complete lattice 1D of hight /> 0.

(1) The algorithm terminates after at most /- NV evaluations of
right-hand sides where

n Sy
N = Z(l + /] size of the system :-)
i=1

Pages: 24
(2) The algorithm returns a solution.
Ifall f; are monotonic, it returns the least one.
410
Proof:
Ad (1):

Every unknown x; may change its value atmost /1 times :-)
Each time, the list /[z;] isaddedto W .

Thus, the total number of evaluations is:

< n+ 3 @ # (I[;m]))/ M

=5 " Y # U[i"é])d/
é@ +h-3n #(Dep fi

@r S+ # (0 1)

= h-N

411

Ad (2):

We only consider the assertion for monotonic f; .

Let /1)y denote the least solution. We show:

. D[,[:rt] | D[:rt] (all the time)
o Dx;| D fieval == x; €W (at exit of the loop body)

® 7 On termination, the algo returns a solution :-))

412

0

e In the example, fewer evaluations of right-hand sides are required
than for RR-iteration :-)

Discussion:

e The algo also works for non-monotonic f; :-)

e For monotonic f;, the algo can be simplified:

e In presence of widening, we replace:

t= D[:ri] Ut ——

e In presence of Narrowing, we replace:

t = D[:r‘i] Ut ——

Ad (2):
We only consider the assertion for monotonic ~ f; .

Let), denote the least solution. Wc%

o Dylz;] 3 D[] (all the time)
o Dx| D fieval == x; €W (at exit of the loop body)

e On termination, the algo returns a solution :-))

412

Example:
ry 2 {H} Uxs ‘ D[:r'l] ’ D[:r‘g] ’ D[.’I‘g] ” W
vy 2 3N {a,b} p 0 5 —T
o2 nUie (v | 0 | 0 s
{a} 1] 0 2
I {a} 0 | {ac} T1] T
o | {aa) {a,c} | @ | {a,c} I, o
&y 0 {a,c} 0 {a,c} M
w3 | {1, 20} {o,c} | {a} [{a,c} []

409

Warning:
e The algorithm relies on explicit dependencies among the unknowns.

So far in our applications, these were obvious. This need not always
be the case :-(

e Weneed some strategy for extract which determines the next
unknown to be evaluated.

e It would be ingenious if we always evaluated first and then accessed
the result ... :-)

—_— recursive evaluation ...

414

Idea:

> If during evaluation of f; , an unknown 1z, isaccessed, =x;
is first solved recursively. Then 1x; isaddedto [[z;] :-)
eval x; x; = solvex;;
I[:J‘J] = f[:r“.j} U}
D[:r‘l.},]:_

The Function solve :

solve x; = if (z; & Stable) {
Stable = Stable U {x;};
t = fi(eval x;);
t=Dlx; Ut
if (¢t # D[xi]) {
W =1[x;]; 1]z =0

Dlx;] =t;
> In order to prevent recursion to descend infinitely, a set Stable . '))
. L . . . = Stable\W;
of unknown is maintained for which solve just looks up their
values :-) solve W
Initially, Stable =0 ... 1
415 416
solve xg eval To T3 solve Ty eval 3 1 solve x4 \& solve Ty
Example: red {as}
0
Dy {a}
) I[z1) = {za)
Consider our standard example:)
Ilxs @
Iy 2 {(!'} U I3 solve x4 eval T3 solve T3
Ty 2 T3 m {”- b} FE {z1}
ry 2 oz U{c} {a)
Dy
Ila1] = 0
solve @3 eval o3 solve
I[z1) = {za)
A trace of the fixpoint algorithm then looks as follows: o - Aac}
ok
Trradoy, 2a)
{a,c}
Dxz iajp
418 419

solve xa eval g wg solve @y eval oz ay solve @y eval oy xg solve xy
Iag {x1}
-0
Dxy {a}
Ilxy {z3}
w A
Dlz3] = {a,c} Z
Ilxg 0
solve @y eval @y a3 solve g
fl Ixg {x1}
{a.c}
Dy i, e}
Ixy 1]
solve 13 eval 3 1 solve x4
SC Ixy {xs}
{a, ¢}
ok
Iy {r1,x2}
{a,e}

419

+ Evaluation starts with an interesting unknown z; (e.g., the
value at stop)

> Then automatically all unknowns are evaluated which influence
r;)

» The number of evaluations is often smaller than during worklist
iteration :-)

> The algorithm is more complex but does not rely on
pre-computation of variable dependencies :-))

» It also works if variable dependencies during iteration change !!!

= interprocedural analysis

420

Warning II:

e The recursive algorithm may not evaluate right-hand sides atomicly.

e Evaluations of right-hand sides may be continued which have been
started with out-dated data. =—= in some cases, it may fail to
determine the least solution !7!

Idea:

e Identify outdated computations ...

e Abort !!

421

Idea (cont.):

> Record when evaluation of a variable has started by means of a set
Called.

> Whenever during evaluation of arhs f;, we detect that no longer
x; € Clalled, we abort ...

eval z; x; = solvex;;
if (x; &€ Called) raise Abort;
Iz;] = Iz;] U {z;};
Dlz;];

» Initially, Culled =10 ...

422

The new Function solve :

solve x; = if (x; € Stable) {
Stable = Stable U {x;}; Called = Called U {x;};
try { t= fi(eval x;); t = D[a;] Ut;
Called = Called\{z;};
if (t # D[xi]) {
W = I[:ri}; f[:rL-] =0
Dlz;] =t
Stable = Stable\W;
app solve 117;
'} with Abort — ();

Aleks Karbyshev, TU Miinchen :-))

424

1.7 Eliminating Partial Redundancies

Example:
/I x4+ 1 is evaluated on every path
// on one path, however, even twice :-(

425

Goal:

426

Idea:

(1) Insert assignments 7. — ¢; such that ¢ is available at all points
where the value of ¢ is required.

(2) Thereby spare program points where ¢ either is already available
or will definitely be computed in future. ‘Z

Expressions with the latter property are called very busy.

(3) Replace the original evaluations of ¢ by accesses to the variable 7.

An expression ¢
is evaluated before a

// backward

is called busy along a path 7, if the expression «
ny of the variables = € Vars(e) is overwritten.

analysis!

¢ is called very busy at u,if ¢ isbusy along every path

—_— we require a novel analysis :-))
427 428
An expression ¢ is called busy along a path =, if the expression ¢
is evaluated before any of the variables 1 € Vars(e) is overwriten. L
Our complete lattice is given by:
B = 25w\ Vars with C = 2

// backward analysis!

¢ is called very busy at w,if ¢ isbusy along every path

mu—" stop .

Accordingly, we require:

Blul = (({[#]* 0| 7 :u—* stop}
A 7

where for 7w =% ...k, :
[[ﬂﬂj = ﬂﬁ-l}]i o...0 [[!2',,,]]j
T r 7T

429

N——

Theeffect [K]F o

fanedge k= (u,leb,v) onlydependson lab,

ie, [k]F=[lab]* where:
LIF B = B
[Pos(e)]* B = [Neg(e)] B = Bu{e}
[r=¢]*B = (B\Expr,)U{e}
[+ = M[e;]*B = (B\Erpr,)U{c}
[Mle,] = e FB = Bu{e, el

430

These effects are all distributive. Thus, the least solution of the constraint
system yields precisely the MOP — given that stop is reachable from
every program point :-)

Example:

7]
6| {y + e}
x = Mla): gk 5| fz+1}
4| {x+1}
S 3 {‘l } 1}
2| {r+1}
Mz] =y + y23 1]
0]

431

