Script generated by TTT Alias Analysis 2. Idea:

Compute for each variable and address a value which safely approximates
the values at every program point simultaneously !

Title: Seidl: Programmoptimierung (02.12.2013)

... in the Simple Example:

Date: Mon Dec 02 14:16:36 CET 2013

new();

Duration: 88:24 min

r [{(0,1)}
y new(J;
1,2
Pages: 40 v {23
| =y (0,1) 1,2)}
_ (1,2)]
381
Discussion:
Each edge (u,lab,v) gives rise to constraints:
e The resulting constraint system has size (4L -n) for
lab Comstraint abstract addresses and » edges :-(
P Pl o Pl e The number of necessary iterations is (J(/:(/ Vars)) ...
) L S . TR
¢ = new(): | Ple] D {(w0)} e The computed information is perhaps still too zu precise !7
© = ylel; PL] > UPLA| £ 4.2l e Inorder to prove correctness of a solution <" € States* we show:
sl =» |1 > G epnpeED 0
P [+] Lo]
foy'all FAddr -

;T / . - .

Other edges have no effect :-) .

382 383

Each edge (u,lab,v) gives rise to constraints:

lab Constraint

iy |Pl] 2 Pl

r = new(): | Pla] 2 {(uv))

e=ylch | Pl 2 UL £ e Pll}

yle = | Pl 2 (FEP)?PE]: 0
forall f € Addr

Other edges have no effect :-)

382

Discussion:

e The resulting constraint system has size O(L-n) for
abstract addresses and 1 edges :-(
e The number of necessary iterations is O (/L (k + # Vars))

e The computed information is perhaps still too zu precise !1?

e Inorder to prove correctness of a solution < € States® we show:

[%]
A P N

=

383

Alias Analysis 3. Idea:

Determine one equivalence relation = on variables = and memory
accesses y|| with s, =s, whenever s;,s, maycontain the

same address at some ., s

... in the Simple Example:

new(); = = {{z}.
” {w.4[])
{v[1}

384

Alias Analysis 3. Idea:
Determine one equivalence relation = on variables = and memory

accesses y[] with s, =s, whenever s;,s, may contain the

same address at some . us

... in the Simple Example:

newl};

new(); =

384

Discussion:

> We compute a single information fo the whole program.
> The computation of this information maintains partitions
7={FP,....Pn})
> Individual sets P, are identified by means of representatives
pi € P
> The operations on a partition 7 are:
find ('rl.pé = pi ifpe b
// returns the representative
union (;_l\fpilrpiz) = (P UPYU{P [ir#] #i2}
I ? 1’\ // unions the represented classes

385

> If oy, 20 € Vars are equivalent, then also x4[] and 2]]
must be equivalent :-)

»If PN Vars # (), then we choose p; € Vars . Then we can
apply union recursively :

find (7, ¢1)

union” (m,q1.¢2) = let p;,
pi, = find(m, ¢2)
in if p;, ==p,, then 7

else let m = wunion (m,pi,,Pis)

in if pi,,pi, € Vars then

union™ (m, p;, [|, pin[1)
e G-

386

> If awy, 10 € Vars are equivalent, thenalso #1[] and 2[]
must be equivalent :-)
> If Pyn Vars # 0, then we choose p; € Vars . Then we can

apply union recursively :

union” (T,qy, q2) = let p;, = find (7, q)
pi, = find(m, q)
in if p;, ==p;, then 7

else let 1 = union (,pi,, Pis)

in if pi,,pi, € Vars then

union™ (7, pi, [1. pis[])

386

The analysis iterates over all edges once:

o= {{z},{=[]} | © € Vars};
forall k= (_ lab,_) do == [lab]!n;

[=yt n = union™ (7, x,y)

[t =ylel:]!m = union* (&, x,y]])
[yle]l = z;]Fx = union™ (7, =, y[])
[

lab]F = 7 otherwise

387

... in the Simple Example:

... iIn the More Complex Example:

TOARENNTY Neg(SUAGRORUNATII
_>) 0.0 [{h b L1 Gl 2.) | {00} 03[0 40)
(1,2) | {2}, (o}, G IL D) R CNITIRGY
(2,3) | ({1 {y, 2} (o111} (4,5) {[{h,t.r, b1}
(3,4) | {{ed {w, =[]} {ul 1}} (5,6) {A,t,r,], t[]}}
Caveat:
In order to find something, we must assume that variables / addresses - in the Simple Example:
always receive a value before they are accessed.
b
Complexity: {}f‘}({}, {1} {ul 1}
we have: (0,1) | H{aps {wh el 1} ol 1}
O(# edges + 4 Vars) calls of union® (L2) | b {ud, {11l 1)
O(# edges + # Vars) calls of find (2,3) | {{=},{y, 2[]} | {u[1}}
O(# Vars) calls of union Go) | et w2 1H Al 1
== We require efficient Union-Find data-structure :-)

Caveat:
In order to find something, we must assume that variables / addresses

always receive a value before they are accessed.

Complexity:

we have:

calls of union”

calls of find

O(# edges + # Vars
calls of union

== We require efficient Union-Find data-structure :-)

Idea:

Represent partition of [/ as directed forest:

e For wel areference ['[u] to the father is maintained;

e Roots are elements « with F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

391

300
0 (3))
O Kf Idea:
@ ©®

lo[1]2]3]4]s]s]7]

[[t]s]t]a]7]s5]7]

> find (m,u) follows the father references :-)

> union (m, iy, uy) re-directs the father reference of one 1w, ...

392

Represent partition of [/ as directed forest:

e For welU areference [F[u] tothe father is maintained;

e Roots are elements « with Flu] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

391

@\) (—?

n Py -y
(0) 3) 5
; (6)

2))

[o]t[2]3]al5]67

R
NREINEE
=

O

> find (m,u) follows the father references :-)

> union (7, uy, us) re-directs the father reference of one u; ...

392

6)

1 7
o | &
@

Lo 1[2]3]4[s]6]7]

KRN EEE

3%

The Costs:
union : O(1) -)
find 1 Oldepth(m)) -(

Strategy to Avoid Deep Trees:

e Put the smaller tree below the bigger !

e Use findto compress paths ...

@/® N o é
® ®

lof1[2]3]4[5]6]7]

[[efs]1]a]7]s]7]

@/® & @@@
®

6

of1[2]3]4]s]6]7]

afsfr]7[7]s]7]

q
oy

3

Robert Endre Tarjan, Princeton

403

Note:

e By this data-structure, n union- und m find operations
require time O(n +m - a(n,n))

// o the inverse Ackermann-function :-)

e For our application, we only must modify union such that roots
are from Vars whenever possible.

e This modification does not increase the asymptotic run-time. :-)

Sum mary:

The analysis is extremely fast — but may not find very much.

404

Note:

e By this data-structure, n union- und s find operations
require time O(n + m - a(n,n))

// o the inverse Ackermann-function :-)

e For our application, we only must modify union such that roots
are from Vars whenever possible.

e This modification does not increase the asymptotic run-time. :-)

Sum mary:

The analysis is extremely fast — but may not find very much.

404

Background 3: Fixpoint Algorithms

Consider: i 3 filey,..o,x,), i=1,...,n

Observation:

RR-Iteration is inefficient:

» We require a complete round in order to detect termination :-(

» If in some round, the value of just one unknown is changed, then
we still re-compute all :~(

> The practical run-time depends on the ordering on the variables

=

405

Idea: Worklist [teration

If an unknown x; changes its value, we re-compute all unknowns
which depend on ;. Technically, we require:

> thelists Dep f; of unknowns which are accessed during
evaluation of f;. From that, we compute the lists:

Tws) = {z; | x: € Dep f;}

ie,alistofall x; whichdepend on the value of =; ;

> thevalues D[x;] ofthe x; whereinitially Dz = L;

4
The Algorithm: t I C\/Q\/) ’9%

W =[xy,...,: I,
while (W #£ []) {
r; = extractW;
t = Dlxjut
f(t+# D)) {
D[.’I'g] = i
W = append [[x;] VI

}

» alist 1 of all unknowns whose value must be recomputed ... I
where:" eval x; = Dl
406 407
Example: Example:
~ 02 {apus D [Pl [D] W]
T ﬂ {u b} to 2 x3N{a,b} 0 0 0
T Lo, Xy
xy 2 xrU{c} ry 2 a1 U{c}

o]
x| {xs}

ol b
T3 {ﬁl . :r'g})

p

408

() | 0 _
{a} 0 o T\
0
0

T 5
x| {xs} {a,c}
) {a,c}] {a,c} M
25 | {1} {a,c} | {a} | {a,c}]

O B SN 5. N

409

Example:

Theorem
rn 2 {a}Uuxs ‘ Dla1] ’ Dl ’ Dles) ” W Let x; J fi(x1,...,7,), ©¢=1,....n denote aconstraint system
ry D x50 {a,b} - - - over the complete lattice 1D of hight /> 0.
o 0 | 0 1) 2,23
rs - I &
{a}] Ty (1) The algorithm terminates after at most /- N evaluations of
{a} 1] 5 | right-hand sides where
a 1} a,c], & r
! ol .} S N :Z(l + # (Dep i) /] size of the system :-)
o [23) {a,c}] {a,c} Tyl 29 el
- {a,c} 0 {a,c} To | . ; . i
T2 0 =] (2) The algorithm returns a solution.
rs {:rl. .’l"z} {ff- f'} {”} {“, f'} [] Ifall f; are monotonic, it returns the least one.
409 410
Proof:
Theorem
Ad (1):
Every unknown z; may change its value at most /1 times :-) Let w; 3 fi(zr,....2), t=1.., n denote a constraint system

Each time, the list

1]

is added to

W

Thus, the total number of evaluations is:

IA

VAN

T

h

n+ > (h-#(I[z:]))
n+h-Y L # ()

+ h 211:1 # (Dep fi)

i (L+# (Dep fi)
h-l

v

411

over the complete lattice D of hight / > 0.

(1) The algorithm terminates after at most /- N evaluations of
right-hand sides where

n

N=S+#Daf))

1=1

size of the system :-)

(2) The algorithm returns a solution.

Ifall f; are monotonic, it returns the least one.

410

Proof:
Ad (1):

Every unknown x; may change its value at most /i times
Each time, the list 7[z;] isaddedto W .

Thus, the total number of evaluations is:

< n+ E?:l(h - (I[:r‘é]))
= n+h-3 L #([z])

= n+h->.0 ,#(Depf)
he 3o (L+# (Dep fi))
- N

IA

411

