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Compute for each variable and address a value which safely approximates
the values at every program point simultaneously !
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... in the Simple Example:
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new( );
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Discussion:
Each edge (u,lab,v) gives rise to constraints:
e  The resulting constraint system has size (4L -n) for
lab Comstraint abstract addresses and » edges :-(
P Pl o Pl e  The number of necessary iterations is  (J(/:(/ Vars)) ...
) L S . TR
¢ = new(): | Ple] D {(w0)} e  The computed information is perhaps still too zu precise !7
© = ylel; PL] > UPLA| £ 4.2l e Inorder to prove correctness of a solution <" € States* we show:
sl =» |1 > G epnpeED 0
P [+ ] Lo ]
foy'all FAddr -

;T / . - .

Other edges have no effect :-) .
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Each edge (u,lab,v) gives rise to constraints:

lab Constraint

iy |Pl] 2 Pl

r = new(): | Pla] 2 {(uv))

e=ylch | Pl 2 UL £ e Pll}

yle = | Pl 2 (FEP)?PE]: 0
forall f € Addr

Other edges have no effect :-)
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Discussion:

e  The resulting constraint system has size O(L-n) for
abstract addresses and 1 edges :-(
e  The number of necessary iterations is O (/L (k + # Vars))

e  The computed information is perhaps still too zu precise !1?

e Inorder to prove correctness of a solution < € States® we show:
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Alias Analysis 3. Idea:

Determine one equivalence relation = on variables = and memory
accesses y|| with s, =s, whenever s;,s, maycontain the

same address at some ., s

... in the Simple Example:

new(); = = {{z}.
” {w.4[])
{v[ 1}
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Alias Analysis 3. Idea:
Determine one equivalence relation = on variables = and memory

accesses y[] with s, =s, whenever s;,s, may contain the

same address at some . us

... in the Simple Example:

newl};

new(); =
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Discussion:

> We compute a single information fo the whole program.
> The computation of this information maintains partitions
7={FP,....Pn} )
> Individual sets P, are identified by means of representatives
pi € P
> The operations on a partition 7 are:
find ('rl.pé = pi ifpe b
//  returns the representative
union (;_l\fpilrpiz) = (P UPYU{P [ir# ] #i2}
I ? 1’\ // unions the represented classes
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> If oy, 20 € Vars are equivalent, then also  x4[] and 2] ]
must be equivalent :-)

»If PN Vars # (), then we choose p; € Vars . Then we can
apply union recursively :

find (7, ¢1)

union” (m,q1.¢2) = let p;,
pi, = find(m, ¢2)
in if p;, ==p,, then 7

else let m = wunion (m,pi,,Pis)

in if pi,,pi, € Vars then

union™ (m, p;, [ |, pin[ 1)
e G-
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> If awy, 10 € Vars are equivalent, thenalso  #1[] and  2[]
must be equivalent :-)
> If  Pyn Vars # 0, then we choose p; € Vars . Then we can

apply union recursively :

union” (T,qy, q2) = let p;, = find (7, q)
pi, = find(m, q)
in if p;, ==p;, then 7

else let 1 = union (,pi,, Pis)

in if pi,,pi, € Vars then

union™ (7, pi, [ 1. pis[])
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The analysis iterates over all edges once:

o= {{z},{=[]} | © € Vars};
forall k= (_ lab,_) do == [lab]!n;

[ =yt n = union™ (7, x,y)

[t =ylel:]!m = union* (&, x,y]])
[yle]l = z;]Fx = union™ (7, =, y[])
[

lab]F = 7 otherwise
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... in the Simple Example:

... iIn the More Complex Example:

TOARENNTY Neg( SUAGRORUNATII
_>) 0.0 [{h b L1 Gl 2.) | {00} 03[0 40 )
(1,2) | {2}, (o}, G IL D) R CNITIRGY
(2,3) | ({1 {y, 2} (o111} (4,5) {[{h,t.r, b1}
(3,4) | {{ed {w, =[]} {ul 1}} (5,6) {A,t,r, ], t[]}}
Caveat:
In order to find something, we must assume that variables / addresses - in the Simple Example:
always receive a value before they are accessed.
b
Complexity: {}f‘}( {}, {1} {ul 1}
we have: (0,1) | H{aps {wh el 1} ol 1}
O(# edges + 4 Vars)  calls of union® (L2) | b {ud, {11l 1)
O(# edges + # Vars)  calls of find (2,3) | {{=},{y, 2[]} | {u[1}}
O(# Vars) calls of union Go) | et w2 1H Al 1
== We require efficient Union-Find data-structure :-)




Caveat:
In order to find something, we must assume that variables / addresses

always receive a value before they are accessed.

Complexity:

we have:

calls of union”

calls of find

O(# edges + # Vars
calls of union

== We require efficient Union-Find data-structure :-)

Idea:

Represent partition of [/ as directed forest:

e For wel areference ['[u] to the father is maintained;

e Roots are elements «  with  F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

391

300
0 (3) )
O Kf Idea:
@ ©®

lo[1]2]3]4]s]s]7]

[[t]s]t]a]7]s5]7]

> find (m,u) follows the father references :-)

> union (m, iy, uy) re-directs the father reference of one 1w, ...
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Represent partition of [/ as directed forest:

e For welU areference [F[u] tothe father is maintained;

e Roots are elements «  with  Flu] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...
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> find (m,u) follows the father references :-)

> union (7, uy, us) re-directs the father reference of one u; ...
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The Costs:
union :  O(1) -)
find 1 Oldepth(m)) -(

Strategy to Avoid Deep Trees:

e  Put the smaller tree below the bigger !

e Use findto compress paths ...
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Robert Endre Tarjan, Princeton
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Note:

e By this data-structure, n union- und m find operations
require time  O(n +m - a(n,n))

// o the inverse Ackermann-function :-)

e  For our application, we only must modify union such that roots
are from Vars whenever possible.

e  This modification does not increase the asymptotic run-time. :-)

Sum mary:

The analysis is extremely fast — but may not find very much.
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Background 3: Fixpoint Algorithms

Consider: i 3 filey,..o,x,), i=1,...,n

Observation:

RR-Iteration is inefficient:

»  We require a complete round in order to detect termination  :-(

»  If in some round, the value of just one unknown is changed, then
we still re-compute all  :~(

> The practical run-time depends on the ordering on the variables

=
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Idea: Worklist [teration

If an unknown x; changes its value, we re-compute all unknowns
which depend on ;. Technically, we require:

> thelists Dep f; of unknowns which are accessed during
evaluation of  f;. From that, we compute the lists:

Tws) = {z; | x: € Dep f;}

ie,alistofall x; whichdepend on the value of =; ;

> thevalues D[x;] ofthe x; whereinitially Dz = L;

4
The Algorithm: t I C\/Q\/) ’9%

W =[xy,...,: I,
while (W #£ []) {
r; = extractW;
t = Dlxjut
f(t+# D)) {
D[.’I'g] = i
W = append [[x;] VI

}

» alist 1 of all unknowns whose value must be recomputed ... I
where:" eval x; = Dl
406 407
Example: Example:
~ 02 {apus D [Pl [ D] W]
T ﬂ {u b} to 2 x3N{a,b} 0 0 0
T Lo, Xy
xy 2 xrU{c} ry 2 a1 U{c}

o]
x| {xs}

ol b
T3 {ﬁl . :r'g})

p
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() | 0 _
{a} 0 o T\
0
0

T 5
x| {xs} {a,c}
) {a,c} ] {a,c} M
25 | {1} {a,c} | {a} | {a,c} ]

O B SN 5. N
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Example:

Theorem
rn 2 {a}Uuxs ‘ Dla1] ’ Dl ’ Dles) ” W Let x; J fi(x1,...,7,), ©¢=1,....n denote aconstraint system
ry D x50 {a,b} - - - over the complete lattice 1D of hight /> 0.
o 0 | 0 1) 2,23
rs - I &
{a} ] Ty (1)  The algorithm terminates after at most /- N evaluations of
{a} 1] 5 | right-hand sides where
a 1} a,c ], & r
! ol .} S N :Z(l + # (Dep i) /] size of the system :-)
o [23) {a,c} ] {a,c} Tyl 29 el
- {a,c} 0 {a,c} To | . ; . i
T2 0 =] (2)  The algorithm returns a solution.
rs {:rl. .’l"z} {ff- f'} {”} {“, f'} [] Ifall f; are monotonic, it returns the least one.
409 410
Proof:
Theorem
Ad (1):
Every unknown z; may change its value at most /1 times :-) Let w; 3 fi(zr,....2), t=1.., n  denote a constraint system

Each time, the list

1]

is added to

W

Thus, the total number of evaluations is:

IA

VAN

T

h

n+ > (h-#(I[z:]))
n+h-Y L # ()

+ h 211:1 # (Dep fi)

i (L+# (Dep fi)
h-l

v
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over the complete lattice D of hight / > 0.

(1)  The algorithm terminates after at most /- N evaluations of
right-hand sides where

n

N=S+#Daf) )

1=1

size of the system :-)

(2)  The algorithm returns a solution.

Ifall f; are monotonic, it returns the least one.
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Proof:
Ad (1):

Every unknown x; may change its value at most /i times
Each time, the list 7[z;] isaddedto W .

Thus, the total number of evaluations is:

< n+ E?:l(h - (I[:r‘é]))
= n+h-3 L #([z])

= n+h->.0 ,#(Depf)
he 3o (L+# (Dep fi))
- N

IA
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