Script generated by TTT

Title: Seidl: Programmoptimierung (02.12.2013)

Date: Mon Dec 02 14:16:36 CET 2013

Duration: 88:24 min

Pages: 40

Each edge (u, lab, v) gives rise to constraints:

lab			Constraint	
x = y;	$\mathcal{P}[x]$	\supseteq	$\mathcal{P}[y]$	6
x=new();	$\mathcal{P}[x]$	\supseteq	$\{(u,v)\}$	//
x = y[e];	$\mathcal{P}[x]$	\supseteq	$\bigcup \{\mathcal{P}[f] \mid f$	$\mathcal{P}[y]$
$y[e_1] = x;$	$\mathcal{P}[f]$	\supseteq	$(f \in \mathcal{P}[y])$	$\mathcal{P}[x]$): \emptyset
			for all	$f \not\models Addr^{\sharp}$

382

Other edges have no effect :-)

Alias Analysis

2. Idea:

Compute for each variable and address a value which safely approximates the values at every program point simultaneously!

... in the Simple Example:

x	$\{(0,1)\}$
y	$\{(1,2)\}$
(0,1)	{(1, 2)}
(1, 2)	(0 /

381

Discussion:

- The resulting constraint system has size $\mathcal{O}(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is $\mathcal{O}(k(k + \#Vars))$...
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

Each edge (u, lab, v) gives rise to constraints:

lab		Constraint
x = y;	$\mathcal{P}[x] \supseteq$	$\mathcal{P}[y]$ $\{(u, v)\}$ $\bigcup \{\mathcal{P}[f] \mid f \in \mathcal{P}[y]\}$ $(f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
x = new();	$\mathcal{P}[x] \supseteq$	$\{(u,v)\}$
x = y[e];	$\mathcal{P}[x] \supseteq$	$\bigcup \{ \mathcal{P}[f] \mid f \in \mathcal{P}[y] \}$
$y[e_1] = x;$	$\mathcal{P}[f] \supseteq$	$(f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
		for all $f \in Addr^{\sharp}$

Other edges have no effect :-)

382

Alias Analysis 3. Idea:

Determine one equivalence relation \equiv on variables x and memory accesses $y[\]$ with $s_1 \equiv s_2$ whenever s_1, s_2 may contain the same address at some u_1, u_2

... in the Simple Example:

Discussion:

- The resulting constraint system has size $\mathcal{O}(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is O(k(k + #Vars)) ...
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

383

Alias Analysis 3. Idea:

Determine one equivalence relation \equiv on variables x and memory accesses $y[\]$ with $s_1 \equiv s_2$ whenever s_1, s_2 may contain the same address at some u_1, u_2

... in the Simple Example:

Discussion:

- → We compute a single information fo the whole program.
- The computation of this information maintains partitions $\pi = \{P_1, \dots, P_m\}$:-)
- \rightarrow Individual sets P_i are identified by means of representatives $p_i \in P_i$.
- \rightarrow The operations on a partition π are:

$$\begin{array}{lll} \text{find } (\pi,p) & = & p_i & \text{if } p \in P_i \\ & /\!/ & \text{returns the representative} \\ \\ \text{union } (\pi,p_{i_1},p_{i_2}) & = & \{P_{i_1} \cup P_{i_2}\} \cup \{P_j \mid i_1 \neq j \neq i_2\} \\ & /\!/ & \text{unions the represented classes} \end{array}$$

385

- \rightarrow If $x_1, x_2 \in Vars$ are equivalent, then also $x_1[\]$ and $x_2[\]$ must be equivalent :-)
- \rightarrow If $P_i \cap Vars \neq \emptyset$, then we choose $p_i \in Vars$. Then we can apply union recursively:

- \rightarrow If $x_1, x_2 \in Vars$ are equivalent, then also $x_1[\]$ and $x_2[\]$ must be equivalent :-)
- \rightarrow If $P_i \cap Vars \neq \emptyset$, then we choose $p_i \in Vars$. Then we can apply union recursively:

$$\begin{array}{rcl} \operatorname{union^*}(\pi,q_1,q_2) &=& \operatorname{let} \ p_{i_1} &=& \operatorname{find}(\pi,q_1) \\ &p_{i_2} &=& \operatorname{find}(\pi,q_2) \\ &\operatorname{in} \ \operatorname{if} \ p_{i_1} == p_{i_2} \operatorname{then} \ \pi \\ &\operatorname{else} \ \operatorname{let} \ \pi &=& \operatorname{union}(\pi,p_{i_1},p_{i_2}) \\ &\operatorname{in} \ \operatorname{if} \ p_{i_1},p_{i_2} \in \operatorname{Vars} \operatorname{then} \\ &\operatorname{union^*}(\pi,p_{i_1}[\],p_{i_2}[\]) \\ &\operatorname{cle} &\operatorname{cle}$$

386

The analysis iterates over all edges once:

$$\pi = \{\{x\}, \{x[\]\} \mid x \in \mathit{Vars}\};$$
 forall $k = (_, lab, _)$ do $\pi = [\![lab]\!]^\sharp \, \pi;$

where:

... in the Simple Example:

388

... in the More Complex Example:

	$\{\{h\},\{r\},\{t\},\{h[]\},\{t[]\}\}$
(2,3)	${[h,t], \{r\}, [h], t]}$
(3,4)	$\{ \boxed{\{h,t,h[\],t[\]\}},\{r\} \}$
(4, 5)	$\{ [\{h,t,r,h[],t[]\}] \}$
(5,6)	$\{\{h, t, r, h[], t[]\}\}$

389

Caveat:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we have:

$$\mathcal{O}(\# edges + \# Vars)$$
 calls of union* $\mathcal{O}(\# edges + \# Vars)$ calls of find $\mathcal{O}(\# Vars)$ calls of union

⇒ We require efficient Union-Find data-structure :-)

... in the Simple Example:

Caveat:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

⇒ We require efficient Union-Find data-structure :-)

390

(4) (7) (6) (6)

- \rightarrow find (π, u) follows the father references :-)
- ightarrow union (π, u_1, u_2) re-directs the father reference of one u_i ...

Idea:

Represent partition of U as directed forest:

- For $u \in U$ a reference F[u] to the father is maintained;
- Roots are elements u with F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

391

Idea:

Represent partition of U as directed forest:

- For $u \in U$ a reference F[u] to the father is maintained;
- Roots are elements u with F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

- ightarrow find (π,u) follows the father references :-)
- \rightarrow union (π, u_1, u_2) re-directs the father reference of one u_i ...

392

- 0 1 2 3 4 5 6 7
- 1 1 3 1 7 7 5 7

394

The Costs:

union : $\mathcal{O}(1)$:-)

find : $\mathcal{O}(depth(\pi))$:-(

Strategy to Avoid Deep Trees:

- Put the smaller tree below the bigger!
- Use find to compress paths ...

0 1 2 3 4 5 6 7

1 1 3 1 4 7 5 7

395

Robert Endre Tarjan, Princeton

403

Note:

• By this data-structure, n union- und m find operations require time $\mathcal{O}(n+m\cdot\alpha(n,n))$

// α the inverse Ackermann-function :-)

- For our application, we only must modify union such that roots are from *Vars* whenever possible.
- This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

Note:

• By this data-structure, n union- und m find operations require time $\mathcal{O}(n+m\cdot\alpha(n,n))$

// α the inverse Ackermann-function :-)

- For our application, we only must modify union such that roots are from Vars whenever possible.
- This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

404

Background 3: Fixpoint Algorithms

Consider: $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$

Observation:

RR-Iteration is inefficient:

- → We require a complete round in order to detect termination :-(
- → If in some round, the value of just one unknown is changed, then we still re-compute all :-(
- → The practical run-time depends on the ordering on the variables :-(

404

Idea:

Worklist Iteration

If an unknown x_i changes its value, we re-compute all unknowns which depend on x_i . Technically, we require:

 \rightarrow the lists $Dep f_i$ of unknowns which are accessed during evaluation of f_i . From that, we compute the lists:

$$I[x_i] = \{x_i \mid x_i \in Dep f_i\}$$

i.e., a list of all x_i which depend on the value of x_i ;

- \rightarrow the values $D[x_i]$ of the x_i where initially $D[x_i] = \bot$;
- \rightarrow a list W of all unknowns whose value must be recomputed ...

406

Example:

$$x_1 \supseteq \{a\} \cup \{x_3\}$$

$$x_2 \supseteq \{x_3\} \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

	I
x_1	$\{x_3\}$
x_2	0
x_3	$\{x_1, x_2\}$

The Algorithm:


```
W = [x_1, \dots, x_n]; while (W \neq [\ ]) { x_i = \operatorname{extract} W; t = [f_i \operatorname{eval};] t = D[x_i] \sqcup t; if (t \neq D[x_i]) { D[x_i] = t; W = \operatorname{append} I[x_i] W; } \} where: eval \ x_j = D[x_j]
```

407

Example:

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

	I	
x_1	$\{x_3\}$	
x_2	Ø	
x_3	$\{x_1,x_2\}$	

	W	$D[x_3]$	$D[x_2]$	$D[x_1]$
1	x_1, x_2, x_3	Ø	Ø	Ø
2	x_{2}, x_{3}	Ø	Ø	{ a }
1	x_3	Ø	Ø	{ a }
Ý	x_1, x_2	{ <i>a</i> , <i>c</i> }	Ø	{ a }
2	x_3, x_2	{ <i>a</i> , <i>c</i> }	Ø	$\{a,c\}$
6	x_2	{ <i>a</i> , <i>c</i> }	Ø	$\{a,c\}$
	[]	{ a , c }	{ <u>a</u> }	$\{a,c\}$

Example:

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

	I
x_1	$\{x_3\}$
x_2	Ø
x_3	$\{x_1,x_2\}$

$D[x_1]$	$D[x_2]$	$D[x_3]$	W
Ø	Ø	Ø	x_1, x_2, x_3
{ a }	Ø	Ø	x_2, x_3
{ a }	Ø	Ø	x_3
$\{aa$	Ø	$\{a,c\}$	x_1, x_2
$\{a,c\}$	Ø	{ a , c }	x_3, x_2
$\{a,c\}$	Ø	{ <i>a</i> , <i>c</i> }	x_2
$\{a,c\}$	{ a }	{ a , c }	[]

409

Proof:

Ad (1):

Every unknown x_i may change its value at most h times :-)

Each time, the list $I[x_i]$ is added to W.

Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_i))$$

$$= h \cdot N$$

Theorem

Let $x_i \supseteq f_i(x_1, \dots, x_n)$, $i = 1, \dots, n$ denote a constraint system over the complete lattice \mathbb{D} of hight h > 0.

 The algorithm terminates after at most h · N evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (\underline{Dep} f_i))$$
 // size of the system :-)

(2) The algorithm returns a solution.

If all f_i are monotonic, it returns the least one.

410

Theorem

Let $x_i \supseteq f_i(x_1, ..., x_n)$, i = 1, ..., n denote a constraint system over the complete lattice \mathbb{D} of hight h > 0.

(1) The algorithm terminates after at most $h \cdot N$ evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (\underline{Dep} f_i))$$
 // size of the system :-)

(2) The algorithm returns a solution. If all f_i are monotonic, it returns the least one.

Proof:

Ad (1):

Every unknown x_i may change its value at most h times :-)

Each time, the list $I[x_i]$ is added to W.

Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_{i}]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_{i}])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_{i})$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_{i}))$$

$$= h \cdot N$$