Script generated by TTT
Simplification:

e We consider pointers to the beginning of blocks A which allow

Title: Seidl: Programmoptimierung (27.11.2013) indexed accesses Ali])

e Weignore well-typedness of the blocks.

Date: Wed Nov 27 08:30:26 CET 2013 e New statements:

Duration: 74:26 min x=new(); // allocation of a new block
r=uylel; // indexed read access to a block

Pages: 21 ylea) = esr /) indexed write access to a block

e Blocks are possibly infinite :-)

e For simplicity, all pointers point to the beginning of a block.

365

Simple Example:

The Semantics:

x = new();
y = new();
z[0] = y;
y[l] =T;

366 367

The Semantics:

The Semantics:

368 30
More Complex Example: More Complex Example:
r = Null; r = Null;
while (1 £ Null) Neg (¢ # Null) Pos(! while (¢ # Null) { Neg(t - Null) Pos(t # Null)
h =t h=t;
t = t[0]; t=1t[0];
hl0] = r; hl0] = r;
- r=h;
} }

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

Let (p,p) € State, . Then we obtain for the new edges:

[=new():] (p,pr) = (pd{xrsrefh

Addr, = {refa|0<a<h} // addresses @ {(ref h,i) f» OYi € No})
Val, = Addr,UZ // values [r=ylel] (p,pr) = (p@{xw ph))}.,u)
Storer, = (Addry, x Ny) — Valy // store [ylea] = e (o) = (pype {(py, [ea] p) = [e2] p})
State;, = (Vars — Valy) x Store;, /] states (j\ /]\
For simplicity, we set: 0 = Null
373 374
Alias Analysis 1. Idea:
Caveat: e Distinguish finitely many classes of blocks.

This semantics is too detgilled in that it computes with gbsolute
Addresses. Accordingly, the twa programs:

x = new();

Y = new

are not considered as equivalent !!?

Possible Solution:

Define equivalence only up to permutation of addresses :-)

e Collect all addresses of a block into one set!
e Use sets of addresses as abstract values!

= Points-to-Analysis

Addrt =| Edges // creation edges
Valt = 2444’ // abstract values
Storet = AddrF — Val? // abstract store

State* = (Vars — Val®) x Store* /{/ abstract states

// complete lattice !!!

376

Let

(p.pt) € Staley, . Then we obtain for the new edges:

[=new();] (p, i) = (p& {x > ref h},
pu@ {(ref h,i) 0] ie Ny}

[z = ylel:] (p. 1) (p@{z = plpy ldp)}.
[vled] = e2] (o) 2N (0 e @ {(pw, [ea] p) = [e2] p})

.. in the Simple Example:

o[v Job]

new();

ONONONCONC,
=1
= W N =
—_
—_—
o
—
—_— e e e
—_—
—_
—_—
—
(8]
—_—
—
—_
—
[Sv]
—

an

The Effects of Edges:

Zorlor, of e

[,) (D, M) = (D, M)

[(_, Pos(e), I]* (D, M) = (D, M)

[(_x =y,)IF (D, M) = (Da&{r— Dy}, M)

[)]Ii (D, M) = (D& {r— 0}, M) R e & Vars
[(w, 2 = new();,)] (D, M) = (D@ {rw— {(u,v)}}, M)

Coom b P DM = (D0 for MUY | £€ Do})
[Covfer) = 2 B (D, M) = (DM@ {f > (MfUDu)| f €Dy}

Agln Lon

378

Caveat:

The value Null has been ignored. Dereferencing of Null or
negative indices are not detected :-(

Destructive updates are only possible for variables, not for blocks in

storage!

—— no information, if not all block entries are initialized before
use :-((

The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics
=

In order to prove correctness, we first instrument the concrete

semantics with extra information which records where a block has
been created.

m

Caveat:

e The value Null has been ignored. Dereferencing of Null or
negative indices are not detected :-(

e Destructive updates are only possible for variables, not for blocks in

e We compute possible points-to information.
storage!
.))) o ¢ From that, we can extract may-alias information.
—— no information, if not all block entries are initialized before
e The analysis can be rather expensive — without finding very much

=(

e Separate information for each program point can perhaps be

use -((

e The effects now depend on the edge itself.
The analysis cannot be proven correct w.r.t. the reference semantics
=

In order to prove correctness, we first instrument the concrete

abandoned 77

semantics with extra information which records where a block has
been created.

3 380

Alias Analysis 2. Idea:

Compute for each variable and address a value which safely approximates
the values at every program point simultaneously !

e We compute possible points-to information.
1 1 iy .
e From that, we can extract may-alias information. . in the Slmple E,\dmple.

e The analysis can be rather expensive — without finding very much

=(

new();

e Separate information for each program point can perhaps be el L {(0, 1)}
abandoned ?7? y | {(1,2)}
, 0.1)] {(1,2)}

0] o

380 381

Each edge (u,lab,v) gives rise to constraints:
lab Constraint
T =;] 2 Ply]
x = new(); 2] 2 {(u,v)}
x = ylel; e 2 WP f € Plul}
ylef =a: | PIF1 2 (FePR)?PE] - 0
forall f e Addr?
Other edges have no effect :-)

382

Each edge

(u,lab,v) gives rise to constraints:

lab Constraint
r=1; Plr] 2 Ply]
x=new(); | Pla] 2 {(u,v)}
r=ylel | Pll 2 WPIA| £ € Pl
yled o |PUL 2 (FEPL)TPL] 0
forall f e Addr?
Other edges have no effect :-)
382

