Script

generated by TTT

Problem:

5

'Y

The solution can be computed with RR-iteration —
after about 42 rounds :-(

On some programs, iteration may never terminate :-((

Title: Seidl: Programmoptimierung (25.11.2013)
Date: Mon Nov 25 14:15:54 CET 2013 Idea 1: Widening
Duration: 91:13 min e Accelerate the iteration — at the prize of imprecision :-)
e Allow only a bounded number of modifications of values !!!
Pages: 34 ... in the Example:
e dis-allow updates of interval bounds in 7 ...
= a maximal chain:
[3.17] C [3, +¢] T [—o0, +o9]
336
Formalization offthe Approach:
(c) Thesequence G* L. k>0, isanascending chain:
Let x; 3 fi(wxy,...,x,), i=1,..., n (1)) »
lLcGglo..cGflic ..
denote a system of constraints over [where the f; are not
necessarily monotonic. (d If G"L=G""' L=y, then y isasolutionof (1)
Nonetheless, an accumulating iteration can be defined. Consider the (¢) If D has infinite strictly ascending chains, then (d) is not yet

system

We obviously have:

(@)
(b)

of equations:

x is asolution of (1) iff z is a solution of (2).

The function G : D" — D" with

is increasing, i.e., rC Gx forall zelD™.

sufficient ...

but: we could consider the modified system of equations:

T = :rl-(:rl, cey), i=1,...,n

for a binary operation widening:
D? = D with vy Loy Ty

(RR)-iteration for (3) still will compute a solution of (1)

338

(€))

=)

... for Interval Analysis:

e The complete lattice is: Dy = (Vars = I),
e thewidening LU isdefined by:

lup =Dul =D andfor D) # 1 # Dy

1|=1D2)‘I' (Dl‘l‘) U (Dz .J') where
[lo,uo] = [l with

lh it [<y
—oo otherwise

1751 if umy 2 U
+00 otherwise

—— U is not commutative !!!

33

Example:

0,2/0[1,2] = [0,2
[L2]u[0,2] = [~o0,2]
[1,5]U[3,7] = [L,+oc]

> Widening returns larger values more quickly.

> It should be constructed in such a way that termination of iteration
is guaranteed :-)

> For interval analysis, widening bounds the number of iterations by:

Fpoints - (1 + 2 - # Vars)

340

Conclusion:

e In order to determine a solution of (1) over a complete lattice
with infinite ascending chains, we define a suitable widening and
then solve (3) :-)

e Caveat: The construction of suitable widenings is a dark art !!!

Often U ischosen dynamically during iteration such that

> the abstract values do not get too complicated;

> the number of updates remains bounded ...

341

Our Example:

RES)

(o, 0l (6,4 (o)
Our Example: GD] @ @ [0, Y 4}“{0)oo]
: |

Our Example:

o T2 e L | 3 |
0 1 u I u I u [u { w | u
Neg(i Pos(i < 42) 0| —o0 | 400 || =00 | +00 < 12) 0] =00 | +o0 || =00 | +0
1 0 0 0 +oc 1 0 0 0 +oc
Neg((2 0 0 0 +oc Pos(0 < i < 42) 2 0 0 0 +o0
3 0 0 0 +oc 3 0 0 0 +oc
4 0 0 0 +oo || dito 4 0 0 0 +o0 || dito
51 0 0 0 +0o D 0 0 0 +00
G 1 1 1 +0o 6 1 1 1 +00
7 1 42 | oo T 1 42 | 400
3 1 42 | oo s 1 42 | 400
343 343
In our Example:
... obviously, the result is disappointing :-(
Idea 2:
. . . . <42) I, = {1} o
In fact, acceleration with U need only be applied at sufficiently many
places! Pos(0 < i < 42) I, = {2} or
I; = {3}

A set [isaloop separator, if every loop contains at least one point
from [:-)

If we apply widening only at program points from such a set [, then
RR-iteration still terminates !!!

34

345

@/BMC) [‘“/’Q :@)"0]

The Analysis with [= {1}:

e e s
I u I u I u

0] —co | o0 || —c0 | +¢

1 0 0 0 +oo

2 0 0 0 I

3 0 0 0 l

4 0 0 0 11 dito

5 0 0 0 l

6 1 1 1 12

7 1

8 1 42 | 4o

346

Gyo) e[l

The Analysis with [= {2} :

L v 2 [s [
[u I u [u
0f —oc | 4o || —0 | oo || —o¢ | o0
1 0 0 0 0 12
2 0 0 0 +oc NESe'e)
3 0 0 0 l 0 11

4 0 0 0 l 0 11 dito

5 0 0 0 l 0 11
6 1 1 1 12 1 12
7 1 42 | oo 42 | 400
8 1 1 42 12

347

Discussion:

e Both runs of the analysis determine interesting information :-)

e Therunwith [=1{2} provesthatalways =42 after
leaving the loop.

e Onlytherunwith [= {1} finds, however, that the outer check
makes the inner check superfluous :-(

How can we find a suitable loop separator 7 7??

348

Idea 3: Narrowing

Let x denote any solution of (1), i.e.,

@Q@ it=1..., n

Then for monotonic ~ f; ,
i Y b B e i e B S

// Narrowing Iteration

349

Idea 3: Narrowing
Narrowing Iteration in the Example:
Let x denote any solution of (1),i.e.,
x; J fix, i=1,...,n D]IH
. [u
Then for monotonic ~ f;
- 49) 0] —o0 | +00
2 D Fa J F22...3F2 3. .. - T 0 |+
. . . (0 <i<42) 2 0 +
J/ Narrowing Iteration Pos(0) =i < 42) >
3 0 +oo
4 0 +oo
Every tuple F*z isasolutionof (1) :-) s 0 | 40
— 6 1 +00
Termination is no problem anymore: T 42 |t
we stop whenever we want :-)) 8] 42 | +o0
// The same also holds for RR-iteration.
350 351
Narrowing [teration in the Example: Narrowing Iteration in the Example:
oo [«] Ll o] |z |
l u 1 u l u l u l u
0| —co | 400 || =00 | 400 2) 0 —oc | +o0 || —oo | 4oc || —co | 400
L[0 |+oef| 0 [+ - Ll o [+eel|f 0 |40 0 | 42
2 0 +oo 0 11 Pos(0 < i < 42) 2 0 400 0 11 0 11
3 0 + 00 0 11 3 0 +00 0 11 0 11
4 0 + 00 0 11 4 0 +00 0 11 0 11
5 0 + 00 0 11 5 0 +00 0 11 0 11
6 1 + 00 1 12 6 1 +00 1 12 1 12
7 42 | 400 1 7 42 | +o0 1
81 42 | 4oo 42 | 4o B 42 | +o0 42 | 4oc || 42 12

352

353

Discussion:

> We start with a safe approximation.
+ We find that the inner check is redundant :-)
> We find that at exit from the loop, always =42 :))

> It was not necessary to construct an optimal loop separator

Last Question:

Do we have to accept that narrowing may not terminate 777

354

=)

4. Idea: Accelerated Narrowing

of the system of

(0

Lun 4

Obviously, we have for monotonic f;: H¥x = FFa o)

where H (xq,...[Jx

.. for Interval Analysis:

‘We preserve finite interval bounds :-)

Therefore, 1AD = DAL = 1 andfor Dy # 1 # Dy

(Dlﬁf)g).!' = (_Dl .!'} A (DQ.F') where
[1’1. ?.11] I [fz u 2} = [I’ 'H} with
] - IQ if Irl = —20
l1 otherwise
oy if wy =00
w =
1, otherwise

—— [is not commutative !!!

356

0 [F(S,20) =
(5, 18

We preserve finite interval bounds :-)

.. for Interval Analysis:

Therefore, 1AD = DAL = and for Dy # | # Dy
(Dl A Dg) Tr = (Dl r (Dg r) where
[Irl. 1’!1] = [IQ.?!Q] = U '(‘1‘ with

. b if T=—-

11 otherwise
U = 00

u =
otherwise

——= [is not commutative !!!

356

Accelerated Narrowing in the Example:

Discussion:
IO N
1 u 1 n 1 n . i .
» Caveat: Widening also returns for non-monotonic f; a
0| —c0 | 400 || =00 | 400 || —00 | +00
solution. Narrowing is only applicable to monotonic f; !!
1 0 +oo 0 +oo 0 12
ol o 4l 0 ‘ 0 | > In the example, accelerated narrowing already returns the optimal
31 0 |4ec| 0 [11| 0 | m result :-)
4l 0 | +ec! 0 1 0 1" > If the operator = only allows for finitely many improvements
s o | +eell o i1 0 1 of values, we may execute narrowing until stabilization.
G 1 |+oo|l 1 12 1 12 > In case of interval analysis these are at most:
7 42 | 400 1 . .
: o Q #points - (1 + 2 - # Vars)
3 42 | 400 42 | +od 42 ‘ 12
357 358

Discussion:

. . 1.6 Pointer Analysis
> Caveat: Widening also returns for non-monotonic f; a y

solution. Narrowing is only applicable to monotonic ~ f; !!
> In the example, accelerated narrowing already returns the optimal Questions:
result :-)
> If the operator [only allows for finitely many improvements * Are two addresses possibly equal?
of values, we may execute narrowing until stabilization. > Are two addresses delinitively equal?

> In case of interval analysis these are at most:

#points - (L + 2 - # Vars)

1.6 Pointer Analysis

Questions:
> Are two addresses possibly equal? May Alias
> Are two addresses definitively equal? Must Alias

—— Alias Analysis

360

The analyses so far without alias information:
(1) Available Expressions:

e Extendtheset FExpr of expressions by occurring loads M]e] .

o Extend the Effects of Edges:

[t =]t A (AU {ePH\Erpr,
[z = Ml[e;]* A (AU {e, Me]})\ Expr,
[Mle:] =ex:FA = (AU{er, ea})\Loads

361

(2) Values of Variables:

e Extend the set Expr of expressions by occurring loads M e] .

¢ Extend the Effects of Edges:

{x} if ¢ =Ml

1} if ¢ =¢

Ve\{r} otherwise

. 0 if e , €2

[[7‘]-(1}7(2:}]11/(,‘ _ {1’ € {(1(}
|/ (’

otherwise

[x = _U:r]:]]i Ve

362

(3) Constant Propagation:

e Extend the abstract state by an abstract store M

e Execute accesses to known memory locations!

(D@ {rs Ma), M) if
[[r]]:1 D=aCT
(D {r— T}, M) otherwise
(D,M @ {a s []:D}) if
[[r 1]]11) =al T

[z = MIe];J* (D, M)

[Mei] = ex]? (D, M)

Ta = T / (a € N)

363

(DLT) otherwise where

3

[Mlei] = eos]F (D, M)

A, 1> 5, T L0 G 5%
Constant Propagation:

Extend the abstract state by an abstract s

Execute accesses to known memory locations!

(D@ {r > Ma}, M) if
[H]i D=arC T
(Da{r— TH M) otherwise
(D, M @ {a — [,]tD}) if
[e1f D=aC T
(D, T) otherwise where

Ta = T (a € N)

[x = Me:JF (D, M)

363

Problems:

e Addresses are from N :-(
There are no infinite strictly ascending chains, but ...
e Exact addresses at compile-time are rarely known :-(

e At the same program point, typically different addresses are
accessed ...

e Storing at an unknown address destroys all information M :-(

——> constant propagation fails :-(

——> memory accesses/pointers kill precision :-(

364

indexed accesses Ali] :-)

We ignore well-typedness of the blocks.

New statements:
x =new(); // allocation of a new block
x=ylel; // indexed read access to a block

yler] = es; // indexed write access to a block

Blocks are possibly infinite :-)

For simplicity, all pointers point to the beginning of a block.

365

