Script generated by TTT

Title: Seidl: Programmoptimierung (25.11.2013)

Date: Mon Nov 25 14:15:54 CET 2013

Duration: 91:13 min

Pages: 34

Formalization of the Approach:

Let
$$x_i \supseteq f_i(x_1, \dots, x_n)$$
, $i = 1, \dots, n$ (1)

denote a system of constraints over \mathbb{D} where the f_i are not necessarily monotonic.

Nonetheless, an accumulating iteration can be defined. Consider the system of equations:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
 (2)

We obviously have:

- (a) \underline{x} is a solution of (1) iff \underline{x} is a solution of (2).
- (b) The function $G: \mathbb{D}^n \to \mathbb{D}^n$ with $G(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$, $y_i = x_i \sqcup f_i(x_1, \ldots, x_n)$ is increasing, i.e., $\underline{x} \sqsubseteq G\underline{x}$ for all $\underline{x} \in \mathbb{D}^n$.

Problem:

- → The solution can be computed with RR-iteration after about 42 rounds :-(
- → On some programs, iteration may never terminate :-((

Idea 1: Widening

- Accelerate the iteration at the prize of imprecision :-)
- Allow only a bounded number of modifications of values !!!
 ... in the Example:
- dis-allow updates of interval bounds in \mathbb{Z} ...
 - ⇒ a maximal chain:

(c) The sequence $G^k \perp 1$, $k \geq 0$, is an ascending chain:

$$\bot \sqsubseteq G \bot \sqsubseteq \ldots \sqsubseteq G^k \bot \sqsubseteq \ldots$$

- (d) If $G^k \perp = G^{k+1} \perp = y$, then y is a solution of (1).
- (e) If \mathbb{D} has infinite strictly ascending chains, then (d) is not yet sufficient ...

but: we could consider the modified system of equations:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
(3)

for a binary operation widening:

(RR)-iteration for (3) still will compute a solution of (1) :-)

... for Interval Analysis:

- The complete lattice is: $\mathbb{D}_{\mathbb{I}} = (\mathit{Vars} \to \mathbb{I})_{\perp}$
- the widening

 is defined by:

$$\perp \sqcup D = D \sqcup \perp = D$$
 and for $D_1 \neq \perp \neq D_2$:

$$(D_1 \sqcup D_2) x = (D_1 x) \sqcup (D_2 x) \quad \text{where}$$

$$[l_1, u_1] \sqcup [l_2, u_2] = [l, u] \quad \text{with}$$

$$l = \begin{cases} l_1 & \text{if} \quad l_1 \leq l_2 \\ -\infty & \text{otherwise} \end{cases}$$

$$u = \begin{cases} u_1 & \text{if} \quad u_1 \geq u_2 \\ +\infty & \text{otherwise} \end{cases}$$

⇒ is not commutative !!!

339

Example:

$$[0,2] \sqcup [1,2] = [0,2]$$

$$[1,2] \sqcup [0,2] = [-\infty,2]$$

$$[1,5] \sqcup [3,7] = [1,+\infty]$$

- → Widening returns larger values more quickly.
- → It should be constructed in such a way that termination of iteration is guaranteed :-)
- → For interval analysis, widening bounds the number of iterations by:

$$\#points \cdot (1 + 2 \cdot \#Vars)$$

340

Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3):-)
- Caveat: The construction of suitable widenings is a dark art !!!
 Often

 is chosen dynamically during iteration such that
 - → the abstract values do not get too complicated;
 - \rightarrow the number of updates remains bounded ...

Our Example:

	1			
	l	u		
0	$-\infty$	$+\infty$		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0	0		
6	1	1		
7				
8		L		

[0,0] [0,1]=[0,0] (0,0] [0,1]=[0,0]

Our Example:

	1	L	:	2		3
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	$+\infty$		
3	0	0	0	$+\infty$		
4	0	0	0	$+\infty$	di	ito
5	0	0	0	$+\infty$		
6	1	1	1	$+\infty$		
7		L	42	$+\infty$		
8	ا ا	L	42	$+\infty$		

Our Example:

		1	2	2		
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	$+\infty$		
3	0	0	0	$+\infty$		
4	0	0	0	$+\infty$	di	ito
5	0	0	0	$+\infty$		
6	1	1	1	$+\infty$		
7	-	L	42	$+\infty$		
8	_	L	42	$+\infty$		

343

... obviously, the result is disappointing :-(

Idea 2:

In fact, acceleration with $\ \ \sqcup$ need only be applied at sufficiently many places!

343

A set I is a loop separator, if every loop contains at least one point from I:-)

If we apply widening only at program points from such a set I, then RR-iteration still terminates!!!

In our Example:

 $I_1 = \{1\}$ or

 $I_2 = \{2\}$ or

 $I_3 = \{3\}$

The Analysis with $I = \{1\}$:

	1		1 2		3	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	41		
3	0	0	0	41		
4	0	0	0	41	di	to
5	0	0	0	41		
6	1	1	1	42		
7	-	L	_	L		
8	_	L	42	$+\infty$		

(0)0] W[7,4]=[0,42]

The Analysis with $I = \{2\}$:

	1	L	2	2	:	3	4
	l	u	l	u	l	u	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	
1	0	0	0	1	0	42	
2	0	0	0	$+\infty$	0-	<u>+</u> ∞	
3	0	0	0	41	0	41	
4	0	0	0	41	0	41	dito
5	0	0	0	41	0	41	
6	1	1	1	42	1	42	
7		Ĺ	42	$+\infty$	42	$+\infty$	
8		L	-	L	42	42	

347

Discussion:

• Both runs of the analysis determine interesting information :-)

346

- The run with $I = \{2\}$ proves that always i = 42 after leaving the loop.
- Only the run with $I = \{1\}$ finds, however, that the outer check makes the inner check superfluous :-(

How can we find a suitable loop separator *I* ????

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

Then for monotonic f_i ,

 $\underline{x} \supseteq F\underline{x} \supseteq F^2\underline{x} \supseteq \ldots \supseteq F^k\underline{x} \supseteq \ldots$

// Narrowing Iteration

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$x_i \supseteq f_i \underline{x}$$
, $i = 1, \ldots, n$

Then for monotonic f_i ,

$$\underline{x} \supseteq F\underline{x} \supseteq F^2\underline{x} \supseteq \ldots \supseteq F^k\underline{x} \supseteq \ldots$$

// Narrowing Iteration

Every tuple $F^k \underline{x}$ is a solution of (1) :-)

 \Longrightarrow

Termination is no problem anymore:

we stop whenever we want :-))

// The same also holds for RR-iteration.

350

Narrowing Iteration in the Example:

	0				
	l	u			
0	$-\infty$	$+\infty$			
1	0	$+\infty$			
2	0	$+\infty$			
3	0	$+\infty$			
4	0	$+\infty$			
5	0	$+\infty$			
6	1	$+\infty$			
7	42	$+\infty$			
8	42	$+\infty$			

351

Narrowing Iteration in the Example:

	()	1	1
	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$
2	0	$+\infty$	0	41
3	0	$+\infty$	0	41
4	0	$+\infty$	0	41
5	0	$+\infty$	0	41
6	1	$+\infty$	1	42
7	42	$+\infty$		L
8	42	$+\infty$	42	$+\infty$

Narrowing Iteration in the Example:

	()		L	2	2
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$	-		-	L
8	42	$+\infty$	42	$+\infty$	42	42

Discussion:

- We start with a safe approximation.
- We find that the inner check is redundant :-)
- We find that at exit from the loop, always i = 42:-)
- It was not necessary to construct an optimal loop separator :-)))

Last Question:

Do we have to accept that narrowing may not terminate ???

354

... for Interval Analysis:

We preserve finite interval bounds :-)

□ is not commutative!!!

Accelerated Narrowing 4. Idea:

Assume that we have a solution $\underline{x} = (x_1, \dots, x_n)$ of the system of constraints

$$x_i \supseteq f_i(x_1, \dots, x_p), \quad i = 1, \dots, n$$
 (1)

Then consider the system of equations:

$$x_i = x \bigcap_{i=1}^{n} f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (4)

Obviously, we have for monotonic f_i : $H^k \underline{x} = F^k \underline{x}$:-)

where $H(x_1,...,x_n) = (y_1,...,y_n)$, $y_i = x_i \sqcap f_i(x_1,...,x_n)$.

In (4), we replace \sqcap durch by the novel operator \sqcap where:

$$a_1 \sqcap a_2 \sqsubseteq a_1 \sqcap a_2 \sqsubseteq a_1$$

... for Interval Analysis:

We preserve finite interval bounds :-)

Therefore. $\bot \sqcap D = D \sqcap \bot = \bot$ and for $D_1 \neq \bot \neq D_2$:

$$\begin{array}{rcl} \left(D_1\sqcap D_2\right)x & = & \left(D_1x\right)\sqcap \left(D_2x\right) & \text{where} \\ \left[l_1,u_1\right]\sqcap \left[l_2,u_2\right] & = & \left[l,u\right] & \text{with} \\ \\ l & = & \begin{cases} l_2 & \text{if} \quad l_1=-\infty \\ l_1 & \text{otherwise} \end{cases} \\ \\ u & = & \begin{cases} u_2 & \text{if} \quad u_1=\infty \\ u_1 & \text{otherwise} \end{cases} \end{array}$$

□ is not commutative!!!

Accelerated Narrowing in the Example:

0 1 2 3 4	$ \begin{array}{c} l \\ -\infty \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} u \\ +\infty \\ +\infty \\ +\infty \end{array}$	$\begin{vmatrix} l \\ -\infty \\ 0 \\ 0 \end{vmatrix}$	$\begin{array}{c} u \\ +\infty \\ +\infty \\ 41 \end{array}$	$\begin{array}{c c} l \\ -\infty \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} u \\ +\infty \\ 42 \\ 41 \end{array} $
1 2 3	0	$+\infty$ $+\infty$	0	$+\infty$	0	42
3	0	$+\infty$				
3			0	41	0	41
	0	l . I				
4	U	$+\infty$	0	41	0	41
1 11	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$		L		
8	42	$+\infty$	42	+∞	42	42

Discussion:

- \rightarrow Caveat: Widening also returns for non-monotonic f_i a solution. Narrowing is only applicable to monotonic f_i !!
- → In the example, accelerated narrowing already returns the optimal result :-)
- → If the operator ¬ only allows for finitely many improvements of values, we may execute narrowing until stabilization.
- → In case of interval analysis these are at most:

$$\#points \cdot (1 + 2 \cdot \#Vars)$$

358

Discussion:

- \rightarrow Caveat: Widening also returns for non-monotonic f_i a solution. Narrowing is only applicable to monotonic f_i !!
- \rightarrow In the example, accelerated narrowing already returns the optimal result :-)

357

- → If the operator ¬ only allows for finitely many improvements of values, we may execute narrowing until stabilization.
- → In case of interval analysis these are at most:

$$\#points \cdot (1 + 2 \cdot \#Vars)$$

1.6 Pointer Analysis

Questions:

- → Are two addresses possibly equal?
- → Are two addresses definitively equal?

1.6 Pointer Analysis

Questions:

→ Are two addresses possibly equal? May Alias

→ Are two addresses definitively equal? Must Alias

→ Alias Analysis

360

(2) Values of Variables:

- Extend the set Expr of expressions by occurring loads M[e].
- Extend the Effects of Edges:

$$\llbracket x = M[e]; \rrbracket^{\sharp} V e' = \begin{cases} \{x\} & \text{if} \quad e' = M[e] \\ \emptyset & \text{if} \quad e' = e \\ V e' \setminus \{x\} & \text{otherwise} \end{cases}$$

$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} V e' = \begin{cases} \emptyset & \text{if} \quad e' \in \{e_1, e_2\} \\ V e' & \text{otherwise} \end{cases}$$

The analyses so far without alias information:

- (1) Available Expressions:
- Extend the set Expr of expressions by occurring loads M[e].
- Extend the Effects of Edges:

361

- (3) Constant Propagation:
- Extend the abstract state by an abstract store M
- Execute accesses to known memory locations!

$$\llbracket x = M[e]; \rrbracket^{\sharp}(D, M) = \begin{cases} (D \oplus \{x \mapsto M \, a\}, M) & \text{if} \\ & \llbracket e \rrbracket^{\sharp} \, D = a \, \Box \, \top \\ (D \oplus \{x \mapsto \top\}, M) & \text{otherwise} \end{cases}$$

$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp}(D, M) = \begin{cases} (D, M \oplus \{a \mapsto \llbracket e_2 \rrbracket^{\sharp} D\}) & \text{if} \\ & \llbracket e_1 \rrbracket^{\sharp} \, D = a \, \Box \, \top \\ (D, T) & \text{otherwise} \end{cases}$$

$$\exists a = \top \qquad (a \in \mathbb{N})$$

- (3) Constant Propagation:
- Extend the abstract state by an abstract store M
- Execute accesses to known memory locations!

$$\llbracket x = M[e]; \rrbracket^{\sharp}(D, M) = \begin{cases} (D \oplus \{x \mapsto M \, a\}, M) & \text{if} \\ & \llbracket e \rrbracket^{\sharp} \, D = a \, \sqsubseteq \, \top \\ (D \oplus \{x \mapsto \top\}, M) & \text{otherwise} \end{cases}$$

$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp}(D, M) = \begin{cases} (D, M \oplus \{a \mapsto \llbracket e_2 \rrbracket^{\sharp} D\}) & \text{if} \\ & \llbracket e_1 \rrbracket^{\sharp} \, D = a \, \sqsubseteq \, \top \\ (D, \underline{\top}) & \text{otherwise} \end{cases}$$

$$\exists a = \top \qquad (a \in \mathbb{N})$$

363

Simplification:

- We consider pointers to the beginning of blocks A which allow indexed accesses A[i] :-)
- We ignore well-typedness of the blocks.
- New statements:

x = new(); // allocation of a new block x = y[e]; // indexed read access to a block $y[e_1] = e_2$; // indexed write access to a block

- Blocks are possibly infinite :-)
- For simplicity, all pointers point to the beginning of a block.

Problems:

- Addresses are from \mathbb{N} :-(There are no infinite strictly ascending chains, but ...
- Exact addresses at compile-time are rarely known :-(
- At the same program point, typically different addresses are accessed ...
- Storing at an unknown address destroys all information M:-(

```
constant propagation fails :-(
memory accesses/pointers kill precision :-(
```