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Caveat: Z7 isnot a complete lattice in itself :-(

Q) D= (Vars = Z")L = (Vars > ZT)U {L}
// L denotes: “not reachable” :-))
with D,C D, iff 1=D or
DyxE Dyr (2 € Vars)

Remark: D isacomplete lattice :-)
Consider X CD.Wlog, L&X.
Then X C Vars — Z7 .

If X =0,then UX=L e D :)

If X#0 ,then ||X=D with

Dr = |{fr|feX}

z if r=z (feX)

=)

If X#0 .then |[|X =D with

Di = L7 | fex)
{z if fo=2 (felX)

T otherwise

=)

For every edge k = (

[K]f = [lab]t : D — I[D

whrCh simulates the concrete computation.

) , construct an effect function

Obviously, [lab]* L = L forall lah :-)
Nowlet | # D e Vars »Z7.
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Idea:

e Weuse D todetermine the values of expressions.

=)
s}
[}

Idea:

e Weuse D todetermine the values of expressions.

e  For some sub-expressions, we obtain T  :-)

e

E—

‘We must replace the concrete operators [ by abstract operators

Of  whichcan handle T :

" T if a=Torb=T

alfb =
aOb otherwise

[dea:

e Weuse D todetermine the values of expressions.

e  For some sub-expressions, we obtain T :-)

.

We must replace the concrete operators [ by abstract operators
Of  whichcan handle T :

T if a=Torb=T
abh =

aOb otherwise

e  The abstract operators allow to define an abstract evaluation of
expressions:
[efF = (Vars - Z") > Z7
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Idea:

e Weuse D todetermine the values of expressions.

e  For some sub-expressions, we obtain T :-)

——

‘We must replace the concrete operators [ by abstract operators
Of  which can handle T :

T if a=Torb=T
adlh =

ab otherwise

e  The abstract operators allow to define an abstract evaluation of
expressions:
[e]* : (Vars = 27) = 27
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Abstract evaluation of expressions is like the concrete evaluation — but
with abstract values and operators. Here:

[[r]]iD = ¢
Hr]rfg}]jD [[(l}]jDDj[[fg]]iD

... analogously for unary operators :-)

Abstract evaluation of expressions is like the concrete evaluation — but
with abstract values and operators. Here:

[]FD = ¢
[[‘J’_‘E]PD = H(J]]iDDj[[fg]ljD

... analogously for unary operators :-)
Example: D={rw—2,y—T}
[t+7]*D = [z]FD +t [7]*D

= 2+7
9

[[.1' ,.'_,t]]iD = 25T

t
bt
=

Thus, we obtain the following effects of edges  [lab]*:

L D

I
T

[Pos (e)]F D

Il
——
o

=

otherwise
o D if OE[HPD

Neg (e)]* D =

[Neg (<)] {i othcrwiscﬂ}ql "_?7/@‘ .

[[.1' _fzﬂjD = Do {ri—) [[r]]iD}

[[.1' = ,U:r::]]iD = D& {M—) T}

[Me]=ex]PD = D

.. whenever D#1 )

At start, wehave Dy ={rw— T |z € Vars}.

Example:




At start, we have

Example:

Dt = {.1‘ =T \ T e 1-"(;-!:%} .

1| {o—T}
2 | {z T}
3| {z—T}
4 | {xr =T}
5| LuU{r—=7={r—T}
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The abstract effects of edges [k]* are again composed to the effects of
paths 7© =k, ... k. by

|[1T]|i = |[le:,‘]]j 0...0 [[1;:1}]j D—D

Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977

Patrick Cousot, ENS, Paris
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The abstract effects of edges [k]* are again composed to the effects of
paths T =k ...k by:

[7]* = [k]fo...0o[k]* :D—=D

Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977




The abstract effects of edges [k]* are again composed to the effects of
paths 7 =Fk; ...k by

[7]* = [kJto... 0[]} :D—D
Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation A between theconcrete values and
their descriptions with:

rAay N agCay — rAay

Concretization: vya={z|xAa}
// returns the set of described values :-)
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Patrick Cousot, ENS, Paris

The abstract effects of edges [k]* are again composed to the effects of
paths 7w =Fk ...k by

[[ﬂ]j = [[k,.]]j 0...0 |[le:1]|:1 D—-D
Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation A between theconcrete values and
their descriptions with:

rAa; N agCay —— rAay

Concretization: vya={z|xAa}
// returns the set of described values :-)

283

FENEFR)

The abstract effects of edges [k]* are again composed to the effects of
paths 7 =ky... k. by

|[1T]|i = |[le:,‘]]i 0...0 [[1;:1}]:1 D - D

Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation A between theconcrete values and
their descriptions with:

rAa; N aCay ——= rAas

Concretization: ya={r|xrAa}
// returns the set of described values :-)




(1) Values: A CZxZT

zAa iff z=aVa=T

(1) Values: A CZxZT

zAa iff z=aVa=T

Concretization: Concretization:
{u.} if aC T {u} if aC T
Ya= Ta =
' Z if a=T Z if a=T
(2) Variable Assignments: A C (Vars = Z) x (Vars = Z27)
pAD iff D# L A prC Dar (x€ Vars)
Concretization:
] if D=1
’}‘D =
{p| Vo (pr)A(Dx)} otherwise
284 285
We show:
Example: {.r' =1,y 77} A {.r‘ = T,y 77}
(«) If <A D and [r]s isdefined, then:

(3) States:

A C ((Vars > Z) x (N2 Z)) x (Vars = ZT)
(p,u) A D iff pAD

Concretization:
] if D=1
"p’D =
{(p, ) |Va: (px) A(Dz)} otherwise

(I7) A ([7]* D)

[ ]
A
[D]

D




The abstract semantics simulates the concrete semantics

In particular:
[7]s € v ([x]* D)

288
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The abstract semantics simulates the concrete semantics

In particular:
[ s € 7 ([7]* D)

In practice, this means, e.g., that Dx = —7 implies:

—7 forall p'e~D

ol

== por = =7 for (p,_)=]nr]s

We show:

(x) If <A D and [r]s isdefined, then:
([x]+) A ([«]° D)

=] 7l ]
il .

D D]
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The abstract semantics simulates the concrete semantics

In particular:
[] s € 7 ([«]* D)

In practice, this means, e.g., that Dux = —7 implies:
pler = =7 forall p'e~D
== pov = —7 for (p,_)=[n]s




We show:

To prove (), we show for every edge % :

() I sAD and [r]s isdefined, then:
(Ix]) A ([« D) [+ Ik] 1]
[7] (%)
) -
A A [T
D D
L [~]¢ El Then (x) follows by induction :-)
287 200
To prove (), we show for every expression ¢ :
(% % * ( A ([e] eneve
To prove (*), we show for every edge & : \ ) (Idp) A (D) whenever p A D
[¥]
EN o
D | s
[£]F

Then (%) follows by induction :-)
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To prove (xx), we show for every expression ¢ :

(xxx%) ([]p) A ([c]*D) whenever pA D

To prove ( * ), we show for every operator O :

(x0y) A (2F 0%y whenever = A 2* Ay Ayt
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To prove (*x), we show for every expression ¢ :

(xx%) ([]p) A ([(]*D) whenever pA D

291

To prove (#:x), we show for every expression ¢ :

(x#%) ([]p) A ([c]* D) whenever pA D

To prove (= =), we show for every operator [ :

(xOy) A (:j) whenever A 2f Ay Ay

292

To prove (), we show for every expression ¢ :

(= %) ([c]p) A ([c]* D) whenever p A D

To prove (= ), we show for every operator I :

(x0Oy) A (F O whenever = A 2% Ay A yf

This precisely was how we have defined the operators [ :-)
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Now, (%) is proved by case distinction on the edge labels lab .

Let (p, ;L@) In particular, | # D : Vars = Z7

Case [r =¢e]:

Case |x = Mle];|:

mo = p@d{re p([]n)} mo= p
D, = Daf{r—T)

= (/)1,;1:1).3_01

~ = p@{rr 4 Moo= R Case | Mg =
Dy = D& {‘I‘ }
P1 = p o= p@{lelfp - [elfp}
= (01,%@01 D, =D
_— ({)1.”1};31}1
294 295
(p1,p11) = where
0 = [ep
A [e]fD
C [[1‘ ]ij_)




gfl We conclude: The assertion (*) istrue :-))

u The MOP-Solution:

Case |Pos(e)]|: R
ase (p1. 1) D] = |_|{|[::r]|:t Dr |7 start =% v}

0 # [elp where Diox=T  (r€ Vars).

Il
.r
=
=
1]
o
o
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We conclude: The assertion (%) istrue :-)) We conclude: The assertion (*) istrue :-))
The MOP-Solution: The MOP-Solution
D] = |_|{[[7r}]i Dy | 7 start =" v} D] = |_|{|[7T]|i Dy | 7w start =" v}
where Drr=T (x € Vars). where Dror=T (x € Vars).
By (x), we have for all initial states s and all program executions By (%), we have for all initial states s and all program executions
7  whichreach ©v: 7 whichreach v:
(I7l5) A (D[v]) (Ixl5) A (D*[v])

In order to approximate the MOP, we use our constraint system :-))
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