Script generated by TTT Summary and Application:

» The effects of edges of the analysis of availability of expressions
]) L are distributive:
Title: Seidl: Programmoptimierung (06.11.2013)
(@aU(zyNa))\b = ((aUz)N (aUxg))\b

Date: Wed Nov 06 08:30:39 CET 2013 o) (@D

Duration: 88:33 min > If all effects of edges are distributive, then the MOP can be

computed by means of the constraint system and RR-iteration. :-)

Pages: 43

> If not all effects of edges are distributive, then RR-iteration for the
constraint system at least returns a safe upper bound to the MOP

=)

Summary and Application:

1.2 Removing Assignments to Dead Variables
> The effects of edges of the analysis of availability of expressions

are distributive:

Example:
(aU(zaNax))\b = ((aUz)N(aUxa))\b @ @@
= ((aUx)\b) N ((aUxz)\b) - 3 A ; :

> If all effects of edges are distributive, then the MOP can be r=y+3;

computed by means of the constraint system and RR-iteration. :-)
The value of o at program points 1,2 is over-written before it can
be used.

> If not all effects of edges are distributive, then RR-iteration for the
consfraint system at least returns a safe upper bound to the MOP
) Therefore, we call the variable 1 dead at these program points :-)

Note:

> Assignments to dead variables can be removed :-)

> Such inefficiencies may originate from other transformations.

Note:

> Assignments to dead variables can be removed :-)

» Such inefficiencies may originate from other transformations.

Formal Definition:

The variable » {jscalled live at along the path starting at
u relative to a set] X |of variables either:

if € X and 7 doesnotcontain a definition of x; or:

if 7 canbe decomposed into: 7 = m|kfr2 such that:

e k isauseof x;and

e m docf}lot contain a definition of .

197

k

@ O=0—0O

Thereby, the set of all defined or used variables at an edge
k= (_,lab,_) isdefined by:

lab used defined
] 0

Pos (e) Vars (¢)]

Neg (e) Vars (¢) 1]

T =e; Vars (¢) {x}

x = Mle]; Vars (¢) {2}

Mleq] = eq; | Vars (e;) U Vars (e2)]

198

A variable o whichisnotliveat u» along = (relative to X)is
called dead at = along m (relative to X).

Example:

live | dead

0] {y}| {«}

1| @ | {ry}
o[| ()
310 | {x,y}

The variable = isliveat wu (relativeto X)if x isliveat u The variable = isliveat u (relativeto X)if x isliveat u

along some path to the exit (relative to X'). Otherwise, 1 is called dead along some path to the exit (relative to X). Otherwise, = is called dead
at u (relative to X). at wu (relative to X).
Question:

How can the sets of all dead/live variables be computed for every « 7?7

200 201

The variable r isliveat w« (relativeto X)if o isliveat u Let I, = 2Vers
along some path to the exit (relative to X'). Otherwise, 1 is called dead
at u (relative to X).

Question: LI*L = L
)) [[1)()‘\:‘(']]iL [[A\Vt‘f_;}‘f }]]iL = LU VFH‘.‘;(()
How can the sets of all dead/live variables be computed for every —u 777
[t =¢]F L = (L\{z}) U Vars(e)
ld [=Me;*L = (L\{z})U Vars(e)
aca: oo
[Mle] = ex]F L = LU Vars(er) U Vars(e2)
For every edge k = (u,_,v) . define a function [k]* which transforms
the set of variables which are live at v into the set of variables which

are live at ...

202 203

For k= (_ lab,_),define [k]* = [lab]* by:

LIF L = L

[Pos(e)]* L = [Neg(e)FL = LU Vars(e)
[+ =e]* L = (IN{r})U Vars(e)

[x = ML = (I\{z})U Vars(e)

[Mler] = ex]F L = LU Vars(e1) U Vars(ez)

[E]f can again be composed to the effects ofJ/[[ﬂ]j of paths

™ ..k, by:
[]" =@

204

We verify that these definitions are meaningful :-)

206

‘We verify that these definitions are meaningful :-)

210

The set of variables which are live at « then is given by:

] = TP X |72 u = stop)

.. literally:

The paths startin =« :-)
—— As partial ordering for L weuse C =C.

The set of variables which are live at program exit is given by the set
X)

Transformation 2:

x = Mlel;

=0 =0

Transformation 2:

? g L]
r = e ﬁ
®

r g L]

x = Mle]; ﬁ

OO =0

Transformation 2:

o
®

T = ,Ui(]:

=0 =0

Correctness Proof:

Correctness of the effects of edges: If L is the set of variables
which are live at the exit of the path 7, then [#]*L is the set
of variables which are live at the beginning of 7 :-)

Correctness of the transformation along a path: If the value of a
variable is accessed, this variable is necessarily live. The value of
dead variables thus is irrelevant :-)

Correctness of the transformation: In any execution of the
transformed programs, the live variables always receive the same
values :-))

Computation of the sets £*[u] :

(1) Collectin

k= (u,
Fa

_,v) edge

ysten
(2) Solving tLe constraint systent? by means of RR iteration.

Since I is finite, the iteration will terminate :-)

(3) [If the exit is (formally) reachable from every program
point, then the smallest solution £ of the constraint

system equals L* sinceall [k are distributive

=)

Correctness Proof:

fx=xnats

» Correctness of the effects of edges: If L is the set of variables

which are Tive at the exit of the path 7, then [#]* L is the set
of variables which are live at the peginning of 7 :-)

¢ Correctness of the transformation along a path- If the valug of a

variable is accessed, thi variable is necessarilyllive. The value of
dead variables thus is irrelevant :-)

» Correctness of the transformation: In any execution of the
transformed programs, the live variables always receive the same
values :-))

‘We verify that these definitions are meaningful

8

=y 4 2; y=>5 wx=y+2; My =
ey IR
\@ 2 3 (4)—'.

206

Computation of the sets £*[u] :

8y

2

Collecting constraints:

Listop] 2 X
Llu] 2 [k (L[]

Solving the constraint system by means of RR iteration.

Since I is finite, the iteration will terminate :-)

Computation of the sets L£*[u] :

(1) Collecting constraints:

Lstop] 2 X
L] 2 [k (L[0])

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) [If the exit is (formally) reachable from every program (3) [If the exit is (formally) reachable from every program
point, then the smallest solution £ of the constraint point, then the smallest solution £ of the constraint
system equals L* sinceall [k are distributive :-)) system equals L* sinceall [k]f are distributive :-))
Caveat: The information is propagated backwards !!!
214 215
Example: Example:

I

0 4 (€M) uin
2\ (v} J

|

fl

2 2 (Zfo)
£ 2 (CEMyD) Ut

Ll 2 (LPMah) U e}

£5 2 2]

L] 2 L[7U {y. R}

L7 20

dito

=
3

The left-hand side of no assignment is dead

Caveat:

)

Removal of assignments to dead variables may kill further variables:

M[R) = y:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

MI[R] = y;

MI[R] = y:

Re-analyzing the program is inconvenient

Idea: Analyze (rue liveness!

2 iscalled truly live at « along a path

=

m (relative to X)), either

if x € X, wdoesnotcontain a definition of ; or

if m canbe decomposed into 7= m km such that:

e k isatrue use of r relative to ms;

e 7 does not contain any definition of

225

XZ.

Re-analyzing the program is inconvenient :-(

[dea: Analyze (rue liveness!

x iscalled truly live at « along a path 7 (relative to X), either
it z € X, mx does notcontain a definition of x; or
if 7 canbe decomposed into 7 = m k7 such that:

e L isatrue use of r relative to mo;

e m does not contain any definition of .

5
[
&

k

O—+@——">——~0~0—0

The set of truely used variables at anedge %k = (_, lab,v)

Mley]

lab truely used
0

Pos (e) Vars (e)

Neg (e) Vars (¢)

-
[Me]:

Vars(e,) U Vars(ey)

Vars (¢) ()

Vars (¢) (%)

(%) — given that

is truely live at

U WILL Ty

XM

Q‘,\.@‘MQ_.

)

The set of truely used variables at an LdgL k=(_, lab,v)

lab truely used
0

Pos (¢ Vars (¢)
Neg (¢ Vars (¢)
T = Vars () (*)
v = Mle] Vars (¢) (%)
Mley] = ey; Vars(ey) U Vars(es)

() — given that

is defined as:

x s truely live at v wrt. my :-)

1o
=

Example:

=
pat

Example:

y, R
MI[R] = y;

0

Example:

Example:

,U:H: 1

l
B-0-0-0

230 231
The Effects of Edges: The Effects of Edges:
L]F L = L [:]* L = L
[Pos(e)]F L [Neg(e)]* L = LU Vars(e) [Pos(e)]f L = [Neg(e)FL = LU Vars(e)
[x=e]* L = (L\{z})u Vars(e) [+ =e¢]* L = (L\{z}HU (x € L)? Vars(e): 0
[t =Mle;[FL = (L\{z}U Vars(e) [= Me;FL = (L\N{fz})U (x € L)? Vars(e): 0

[Mie] = e]FL = LU Vars(e1) U Vars(es)

[Mer] = exs]FL =

LU Vars(er) U Vars(es)

233

Note:

e The effects of edges for truely live variables are more complicated
than for live variables :-)

o Nonetheless, they are distributive !!

Note:

e The effects of edges for truely live variables are more complicated
than for live variables :-)

e Nonetheless, they are distributive !! f

To see this, consider for D =2Y, fy=|u Qdﬂ Ph: Q| We
verify:

flpnUy) = l{"fr Eyp Uys)Th: 0 | Q Q [D

= Mﬂz) ?h: 0

|('u I3) 7h: mll.l(u. €y)?h: 0 |

= f‘ézufu

Note:

e The effects of edges for truely live variables are more complicated
than for live variables :-)

e Nonetheless, they are distributive !!
To see this, consider for D=2Y, fy=(uecy)?b: 0 We
verify:
flpiUy) = (wey Uya)?h: 0
= (uey Vuecy)?h: 0
= (wey)?b: DU(ueciy)?h:
= fmufn

—— the constraint system yields the MOP :-))

e True liveness detects more superfluous assignments than repeated
liveness !!!

[
W
&

