Script generated by TTT

Title: Seidl: Programmoptimierung (06.11.2013)

Date: Wed Nov 06 08:30:39 CET 2013

Duration: 88:33 min

Pages: 43

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \backslash b = ((a \cup x_1) \cap (a \cup x_2)) \backslash b$$
$$= ((a \cup x_1) \backslash b) \cap ((a \cup x_2) \backslash b)$$

- → If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
- → If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP
 :-)

Summary and Application:

The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

- → If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
- If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP
 :-)

194

1.2 Removing Assignments to Dead Variables

Example:

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

Note:

- → Assignments to dead variables can be removed ;-)
- → Such inefficiencies may originate from other transformations.

196

Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by:

lab	used	defined
;	Ø	Ø
Pos(e)	Vars(e)	Ø
Neg(e)	Vars(e)	Ø
x = e;	Vars(e)	{ <i>x</i> }
x = M[e];	Vars(e)	{ <i>x</i> }
$M[e_1] = e_2;$	$Vars\left(e_{1}\right)\cup Vars\left(e_{2}\right)$	Ø

Note:

- → Assignments to dead variables can be removed ;-)
- Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.

1

A variable x which is not live at u along π (relative to X) is called dead at u along π (relative to X).

Example:

where $X = \emptyset$. Then we observe:

	live	dead
0	{ <i>y</i> }	{ <i>x</i> }
1	Ø	$\{x,y\}$
2	{ <i>y</i> }	{ <i>x</i> }
3	Ø	$\{x,y\}$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Let $\mathbb{L} = 2^{Vars}$.

For $k = (_, lab, _)$, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

201

 $[\![;]\!]^{\sharp}L \qquad = L$

 $\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L = \llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L = L \cup \operatorname{Vars}(e)$

 $\llbracket x = e; \rrbracket^{\sharp} L \qquad = (L \setminus \{x\}) \cup Vars(e)$

 $\llbracket x = M[e]; \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$

 $\llbracket M[e_1] = e_2; \rrbracket^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

200

Question:

How can the sets of all dead/live variables be computed for every u????

Idea:

For every edge $k = (u, _, v)$, define a function $[\![k]\!]^{\sharp}$ which transforms the set of variables which are live at v into the set of variables which are live at v...

202

Let $\mathbb{L}=2^{\mathit{Vars}}$. For $k=(_,lab,_)$, define $[\![k]\!]^\sharp=[\![lab]\!]^\sharp$ by: $[\![\cdot]\!]^\sharp L = L$

 $\llbracket k \rrbracket^{\sharp}$ can again be composed to the effects of $\llbracket \pi \rrbracket^{\sharp}$ of paths $\pi = k_1 \dots k_r$ by: $\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \dots \circ \llbracket k_r \rrbracket^{\sharp}$

We verify that these definitions are meaningful :-)

206

We verify that these definitions are meaningful :-)

The set of variables which are live at $\ u$ then is given by:

$$\mathcal{L}^*[u] = \bigcup \{ \llbracket \pi \rrbracket^{\sharp} X \mid \pi : u \to^* stop \}$$

... literally:

- The paths start in u:-)
 - \implies As partial ordering for \mathbb{L} we use $\sqsubseteq = \subseteq$.
- The set of variables which are live at program exit is given by the set X:-)

Transformation 2:

212

Transformation 2:

212

Transformation 2:

$$x = e;$$

$$x \notin \mathcal{L}^*[v]$$

$$v$$

Correctness Proof:

- Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $[\![\pi]\!]^{\sharp}L$ is the set of variables which are live at the beginning of π :
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\mathcal{L}^*[\underline{u}]$:

(1) Collecting constraints:

- (2) Solving the constraint system by means of RR iteration.

 Since L is finite, the iteration will terminate:
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive :-))

214

We verify that these definitions are meaningful :-)

Correctness Proof:

- Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $[\![\pi]\!]^{\sharp}L$ is the set of variables which are live at the beginning of π :-)
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\mathcal{L}^*[\underline{u}]$:

(1) Collecting constraints:

$$\begin{array}{lll} \mathcal{L}[stop] &\supseteq & X \\ \mathcal{L}[u] & \supseteq & \llbracket k \rrbracket^{\sharp} \left(\mathcal{L}[v] \right) & & k = (u,_,v) & \text{edge} \end{array}$$

- (2) Solving the constraint system by means of RR iteration.

 Since L is finite, the iteration will terminate:-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^{\sharp}$ are distributive :-))

214

Computation of the sets $\mathcal{L}^*[\underline{u}]$:

(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X$$
 $\mathcal{L}[u] \supseteq \llbracket k \rrbracket^{\sharp} (\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $\llbracket k \rrbracket^\sharp$ are distributive :-))

Caveat: The information is propagated backwards !!!

215

Example:

$$\mathcal{L}[\mathbf{0}] \quad \stackrel{\text{d}}{=} \quad (\mathcal{L}[\mathbf{1}] \setminus \{x\}) \cup \{I\}$$

$$\mathcal{L}[1] \supseteq \mathcal{L}[2] \setminus \{y\}$$

$$\mathcal{L}[2] \supseteq (\mathcal{L}[6] \cup \{x\}) \cup (\mathcal{L}[3] \cup \{x\})$$

$$\mathcal{L}[3] \supseteq (\mathcal{L}[4] \setminus \{y\}) \cup \{x, y\}$$

$$\mathcal{L}[4] \supseteq (\mathcal{L}[5] \setminus \{x\}) \cup \{x\}$$

$$\mathcal{L}[5] \supset \mathcal{L}[2]$$

$$\mathcal{L}[6] \supseteq \mathcal{L}[7] \cup \{y, R\}$$

$$\mathcal{L}[7] \supset \emptyset$$

Example:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

218

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

222

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truly live at u along a path π (relative to X), either

if $x \in X$, π does not contain a definition of x; or

if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:

- k is a true use of x relative to π_2 ;
- π_1 does not contain any definition of x.

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truly live at u along a path π (relative to X), either

if $x \in X$, π does not contain a definition of x; or

if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:

- k is a true use of x relative to π_2 ;
- π_1 does not contain any definition of x.

225

The set of truely used variables at an edge $k = (_, lab, v)$ is defined as:

lab	truely used	
;	Ø	
Pos(e)	$Vars\left(e\right)$	
Neg(e)	$Vars\left(e\right)$	
x = e;	$Vars\left(e\right)$ (*	k)
x = M[e];	Vars(e) (*)
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	

(*) – given that x is truely live at v w.r.t. π_2 :-)

226

The set of truely used variables at an edge $k = (_, lab, v)$ is defined as:

lab	truely used
;	Ø
Pos(e)	$Vars\left(e\right)$
Neg(e)	$Vars\left(e\right)$
x = e;	$Vars\left(e\right) \qquad {\left(*\right)}$
x = M[e];	Vars(e) (*)
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$

(*) – given that x is truely live at v w.r.t. π_2 :-)

226

Example:

Example:

Example:

Example:

230

231

The Effects of Edges:

$$[\![:]\!]^{\sharp}L = L$$
 $[\![\operatorname{Pos}(e)]\!]^{\sharp}L = [\![\operatorname{Neg}(e)]\!]^{\sharp}L = L \cup Vars(e)$
 $[\![x = e :]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$
 $[\![x = M[e] :]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$
 $[\![M[e_1] = e_2 :]\!]^{\sharp}L = L \cup Vars(e_1) \cup Vars(e_2)$

The Effects of Edges:

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

234

Note:

• The effects of edges for truely live variables are more complicated than for live variables :-)

• Nonetheless, they are distributive !! To see this, consider for $\mathbb{D} = 2^U$, $f y = (u \in \mathcal{Y})?b: \mathbf{Q}$. We verify:

$$f(y_1 \cup y_2) = \underbrace{(u \in y_1 \cup y_2)?b: \emptyset}_{= (u \in y_1 \vee u \in y_2)?b: \emptyset}$$

$$= \underbrace{(u \in y_1 \vee u \in y_2)?b: \emptyset}_{= (u \in y_1)?b: \emptyset}$$

$$= f y_1 \cup f y_2$$

235

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !! To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b:\emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

$$= (u \in y_1 \lor u \in y_2)?b: \emptyset$$

$$= (u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$$

$$= f y_1 \cup f y_2$$

⇒ the constraint system yields the MOP :-))

• True liveness detects more superfluous assignments than repeated liveness !!!

