Script generated by TTT

Title: Seidl: Programmoptimierung (04.11.2013)

Date: Mon Nov 04 14:03:23 CET 2013

Duration: 86:22 min

Pages: 57

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3	4	5
0	Ø	Ø	Ø	Ø	
1	$\{1, x > 1, x - 1\}$	{1}	{1}	{1}	
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1,x>1\}$	
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	dito
4	{1}	{1}	{1}	{1}	
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	

134

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3	4	5
0	Ø	Ø	Ø	Ø	
1	$\{1, x > 1, x - 1\}$	{1}	{1}	{1}	
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	dito
4	{1}	{1}	{1}	{1}	
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

136

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

	1
0	Ø
1	{1}
2	$\{1, x > 1\}$
3	$\{1, x > 1\}$
4	{1}
5	$\{1, x > 1\}$

137

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

	1	2
0	Ø	
1	{1}	
2	$\{1, x > 1\}$	
3	$\{1, x > 1\}$	dito
4	{1}	
5	$\{1, x > 1\}$	

The code for Round Robin Iteration in Java looks as follows:

```
\begin{array}{l} \text{for } (i=1;i\leq n;i++)\;x_i=\bot;\\ \text{do } \{\\ & \textit{finished}=\text{true};\\ \text{for } (i=1;i\leq n;i++)\;\{\\ & \textit{new}=f_i(x_1,\ldots,x_n);\\ \text{if } (!(x_i\;\sqsupset \textit{new}))\;\{\\ & \textit{finished}=\text{false};\\ & x_i=\fbox{x_i\;\sqcup\;\textit{new};}\\ \}\\ \}\;\text{while } (!\textit{finished}); \end{array}
```

The code for Round Robin Iteration in Java looks as follows:

139

Correctness:

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *d*-th RR-iteration.

140

Correctness:

Assume $y_i^{(d)}$ is the i-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the i-th RR-iteration.

One proves:

 $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$

Correctness:

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$.

Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$
- (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \ldots, z_n) :-)

Correctness:

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$
- (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \dots, z_n) :-)
- (3) If RR-iteration terminates after d rounds, then $(x_1^{(d)}, \dots, x_n^{(d)})$ is a solution :-))

143

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Correctness:

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)} \quad :-)$
- (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \ldots, z_n) :-)
- (3) If RR-iteration terminates after d rounds, then $(x_1^{(d)}, \dots, x_n^{(d)})$ is a solution :-))

143

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Good:

- \rightarrow *u* before *v*, if $u \rightarrow^* v$;
- → entry condition before loop body :-)

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns

Good:

- \rightarrow *u* before *v*, if $u \rightarrow^* v$;
- → entry condition before loop body :-)

Bad:

e.g., post-order DFS of the CFG, starting at start :-)

146

Good:

147

Inefficient Round Robin Iteration:

	1	2	3	4
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
1	{1}	{1}	{1}	
2	$\{1, x - 1, x > 1\}$	$\{1, x-1, x>1\}$	$\{1, x > 1\}$	dito
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
4	{1}	{1}	{1}	
5	l ø	l ø	Ø	

significantly less efficient:-)

... end of background on: Complete Lattices

152

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ????

AM= (STA) \$ Part -> cr }

154

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ????

For a complete lattice \mathbb{D} , consider systems:

$$\mathcal{I}[start] \ \supseteq \ d_0$$

$$\mathcal{I}[v] \ \supseteq \ [\![k]\!]^{\sharp} (\mathcal{I}[\underbrace{\mathbf{u}}]) \qquad k = (\underbrace{\mathbf{u}},\underline{\ },v) \ \text{edge}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

→ Monotonic Analysis Framework

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ????

For a complete lattice \mathbb{D} , consider systems:

$$\mathcal{I}[start] \supseteq d_0$$

$$\mathcal{I}[v] \supseteq [k] \setminus \mathcal{I}[u]) \qquad k = (u, _, v) \quad \text{edge}$$
where $d_0 \in \mathbb{D}$ and all $[k]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic

155

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* v \}$$

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ????

For a complete lattice \mathbb{D} , consider systems:

$$\mathcal{I}[start] \ \supseteq \ d_0$$

$$\mathcal{I}[v] \ \supseteq \ [\![k]\!]^{\sharp} (\mathcal{I}[\underline{u}]) \qquad k = (\underline{u},\underline{\ },v) \text{ edge}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

→ Monotonic Analysis Framework

156

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp \ d_0 \mid \pi : start \to^* v \}$$

157

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp \ d_0 \mid \pi : start \to^* v \}$$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$$
 for every v

Jeffrey D. Ullman, Stanford

158

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* v \}$$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$$
 for every v

In particular: $\mathcal{I}[v] \supseteq [\pi]^{\sharp} d_0$ for every $\pi: start \to^* v$

160

Proof: Induction on the length of π . Then:

Foundation: $\pi = \epsilon$ (empty path)

Induction on the length of π .

Proof:

 $\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$

163

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp \ d_0 \mid \pi : start \to^* v \}$$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$$
 for every v

Proof: Induction on the length of π .

Foundation: $\pi = \epsilon$ (empty path)

Then:

$$\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$$

Step: $\pi = \pi' k$ for $k = (\mathbf{u}, \underline{\ }, v)$ edge.

Then:

165

Disappointment:

Are solutions of the constraint system just upper bounds ???

166

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(

Disappointment:

Are solutions of the constraint system just upper bounds ????

Answer:

In general: yes :-(

With the notable exception when all functions $[\![k]\!]^{\sharp}$ are distributive ...

:-)

167

The function $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called

- distributive, if f(|X|) = |f(x)| = X for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

169

The function $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called

- distributive, if f(|X|) = |f(x)| = X for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$.

Strictness: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$:-(

Distributivity:

$$f(x_1 \cup x_2) = (x_1 \cup x_2) \cup b$$

$$= f(x_1 \cup f(x_2)) \cup$$

The function $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called

- distributive, if $f(|X|) = |f(x)| x \in X$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$.

170

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, \quad \operatorname{inc} x = x + 1$

•
$$\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$$
, $\operatorname{inc} x = x + 1$
Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(
Distributivity: $f(\bigsqcup X) = \bigsqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

•
$$\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$$
, $\operatorname{inc} x = x + 1$
Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(
Distributivity: $f(\bigsqcup X) = \bigsqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

•
$$\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$$
, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$

•
$$\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$$
, $\operatorname{inc} x = x + 1$
Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(
Distributivity: $f(\sqsubseteq X) = \sqsubseteq \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

•
$$\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$$
, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$:
Strictness: $f \perp = 0 + 0 = 0$:-)

•
$$\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$$
, $\operatorname{inc} x = x + 1$
Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(
Distributivity: $f(\sqsubseteq X) = \sqsubseteq \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

•
$$\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$$
, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$:

Strictness: $f \perp = 0 + 0 = 0$:-)

Distributivity:

 $f((1,4) \perp (4,1)) = f(4,4) = 8$
 $f((1,4) \perp (4,1)) = f(4,4) = 8$

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

179

180

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

From that follows:

$$\begin{array}{rcl} f \, b & = & f \, (a \sqcup b) \\ & = & f \, a \sqcup f \, b \\ & \Longrightarrow & f \, a \; \sqsubseteq \; f \, b & :\text{-}) \end{array}$$

Assumption: all v are reachable from start.

181

Assumption: all v are reachable from start.

Then:

Theorem Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$

183

for all v.

Gary A. Kildall (1942-1994). Has developed the operating system CP/M and GUIs for PCs.

184

Assumption: all v are reachable from start.

Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[rac{oldsymbol{v}}{oldsymbol{v}}] = \mathcal{I}[rac{oldsymbol{v}}{oldsymbol{v}}]$ for all v.

fx=xnqUb

Assumption: all v are reachable from start. Then:

Theorem

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: for all v.

Proof:

It suffices to prove that \mathcal{I}^* is a solution :-)

For this, we show that \mathcal{I}^* satisfies all constraints :-))

Kildall 1972

183

(1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup \{ [\pi]^{\sharp} d_0 | \pi : start \to^* start \}$$

$$\supseteq d_0 : -)$$

187

(1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp d_0 \mid \pi : start \to^* start \}$$

$$\supseteq \llbracket \epsilon \rrbracket^\sharp d_0$$

$$\supseteq d_0 : -)$$

(2) For every $k = (u, \underline{\ }, \underline{\ })$ we prove:

$$\mathcal{I}^*[v] = \bigsqcup\{\llbracket\pi\rrbracket^\sharp d_0 \mid \pi : start \to^* v\}$$

$$\supseteq \bigsqcup\{\llbracket\pi'k\rrbracket^\sharp d_0 \mid \pi' : start \to^* u\}$$

$$= \bigsqcup\{\llbracket k\rrbracket^\sharp (\llbracket\pi'\rrbracket^\sharp d_0) \mid \pi' : start \to^* u\}$$

$$= \llbracket k\rrbracket^\sharp (\bigsqcup\{\llbracket\pi'\rrbracket^\sharp d_0 \mid \pi' : start \to^* u\})$$

$$= \llbracket k\rrbracket^\sharp (\mathcal{I}^*[u])$$
since $\{\pi' \mid \pi' : start \to^* u\}$ is non-empty :-)

188

Caveat:

• Reachability of all program points cannot be abandoned! Consider:

where $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Caveat:

• Reachability of all program points cannot be abandoned! Consider:

Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$

$$\mathcal{I}^*[2] = \bigsqcup \emptyset = 0$$

Caveat:

• Reachability of all program points cannot be abandoned! Consider:

Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$

 $\mathcal{I}^*[2] = \bigcup \emptyset = 0$

• Unreachable program points can always be thrown away :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$