Script generated by TTT

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by
repeated evaluation of right-hand sides :-)

Title: Seidl: Programmoptimierung (04112013) Caveat: Naive fixpoint iteration is rather inefficient :-(
Date: Mon Nov 04 14:03:23 CET 2013
Example:
Duration: 86:22 min
1 2 3 4
. 0 1] 1] i 1]
Pages: 57 Neg(a N T (1 P a3
2 Expr { 1,z — 1} {1,z 1} { }
{ x Fld La—1} | { A }| dito
1 {1} {1} {1} {1}
] Expr {1,: I,z I3 { } { ¥
134
[dea: Round Robin Iteration Conclusion:
Systems of inequations can be solved through fixpoint iteration, i.e., by
Instead of accessing the values of the last iteration, always use the current repeated evaluation of right-hand sides :-)
values of unknowns :-)
Caveat: Naive fixpoint iteration is rather inefficient :-(
Example:
1 2 3 4
0 0 1] @ 0
Neg(1| {Le>Le—1) (1) (1} (1)
2 Expr { l,x } {1,z =1} { I
{La>1lx—1} |4 o1} | 1|4 b | dito
1 {1} {1 {1} {1}
] Expr {1,s l,x } { } { }

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current

values of unknowns :-) values of unknowns :-)
Example: Example:
1
0 0 i
Neg(ax ! Neg(x ! { ! }
2 2 {l,z>1}
3 3 {1,z >1}
4 4 {1}
5 541 e>1})
136 137
[dea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current
values of unknowns :-)

Example:
1 2
0 0
Nesls 1 {1}
' 2| {1,z >1}
3 {10 > 1} | dito
LA
5| {1,z > 1}

138

The code for Round Robin Iteration in Java looks as follows:

for (i =1;i < mjit++)x; = L;
do {
finished = true;
for (i = 1;i < nji++) |
new = fi(xy, ... 2,);
if (x; 2 new)) {
finished = false;

]

} while (!finished);

The code for Round Robin Iteration in Java looks as fofpwq

for(i =1;i < njit+) x; = L L.L'\QJ‘

do {
Jinished = true;
for (: = 1;¢ < njit++)
new = fi v .,
ifl('0x; S new)) {
finished = false;

@y = a; U new,

}
} while (!finished);

Correctness:

@ . 3
Assume y;”' is the i-th component of ¢ L.
(d)

Assume ;" isthevalue of x; after the d-th RR-iteration.

140

Correctness:

Assume y:‘d) is the i-th component of ¥ L.
Assume 27 is the value of x; after the i-th RR-iteration.

i

One proves:

) y:r[) C :r(d] =)

=t

141

Correctness:

Assume yfd') is the i-th component of F? L.
Assume :rff“ is the value of x; after the i-th RR-iteration.

One proves:

(1 y[ff} C TE(I} =)

(2) 2 MJ C z forevery solution (zy,...,z,) :-)

142

Correctness:

Assume yf‘” is the i-th component of F7 |,

1)

Assume :r'i‘" is the value of x; after the i-th RR-iteration.

One proves:

Correctness:

Assume yf'l" is the i-th component of F% L.

1)

Assume :rE" is the value of x; after the i-th RR-iteration.

One proves:

1) YD C2® 0y’ Ca? o
(2) :rE“I" C z; forevery solution (zy,...,2,) i) 2) :rf’i"'J C z forevery solution (zy,...,z,) :-)
(3) If RR-iteration terminates after ¢ rounds, then (3) If RR-iteration terminates after d rounds, then
(:rrfU. o™ is a solution =) (:rgd". ~.2i) s a solution =)
143 143
Caveat: Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns
Il

The efficiency of RR-iteration depends on the ordering of the unknowns
1

Good:
> u before v, if w—*uv;

> entry condition before loop body :-)

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns
"
Good: Bad:
Good:

B u before v, if u —=* v;

> entry condition before loop body :-)

Neg Neg
Bad:
e.g., post-order DFS of the CFG, starting at start :-)
146 147
Inefficient Round Robin Iteration: ... end of background on: Complete Lattices

1 2 3 1
0 T {1l x=1} { h
1 {1} {1} {1}
2| {1,z -1,z >1} | {1z Lax>1} | {1,z > 1} | dito
3 Eapr {Lx>1) {Lz>1)
1 {1} {1} {1}
5 1] 0]
— significantly less efficient :-)

152 153

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful 777

€ Rl
f= () g e

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful 777

For a complete lattice D, consider systems:

@u._. v) edge

where dy € D andall [k]*:D — D are monotonic ...

... end of background on: =~ Complete Lattices

Final Question:

‘Why is a (or the least) solution of the constraint system useful 777

For a complete lattice [0, consider systems:

Z[start] o
Z[v] 3 [k (Z]u]) k=(u,_,v) edge

Lo

where dy€D andall [k]":D— D are monotonic...

= Monotonic Analysis Framework

Wanted: MOP (Merge Over all Paths)

T[] = U{Hﬁ]]jdn | 7@ start =" v}

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful 777

For a complete lattice [, consider systems:

I[start] 3 do
Z[v] 3 [k)*(Z]u]) k=(u,_,v) edge

where dy €D andall [k]*:[» — D are monotonic ...

= Monotonic Analysis Framework

Wanted: MOP (Merge Over all Paths)

] = U{Hﬁ]]u do | 72 start =" v}

Wanted: MOP (Merge Over all Paths)

I = U{ﬂﬂ]]udg | 7o start =" v}

Theorem Kam, Ullman 1975

Assume 7 is a solution of the constraint system. Then:

Zv] 3 I*[v) forevery

158

Jeffrey D. Ullman, Stanford

Wanted: MOP (Merge Over all Paths) Proof: Induction on the length of .
] = |_|{[[?r]]ir'][; | 71 start =% v} Foundation: 7 =e¢ (empty path)
Then:
[[ﬁ]]jd[, = [[f]jrf[, = dy C Z[start]
Theorem Kam, Ullman 1975
Assume 7 is a solution of the constraint system. Then:
Zv] 3 Iy forevery o
In particular: Z[v] 3 []*d, forevery w: start —=* v
160 163
Proof: Induction on the length of . Wanted: MOP (Merge Over all Paths)
T[] = U{Hﬁﬂjdu | m: start =" v}
Theorem Kam, Ullman 1975
Assume 7 is a solution of the constraint system. Then:

161

Zlv] 3 Z*[v] forevery v

158

Proof: Induction on the length of .

Foundation: 7 =¢ (empty path)
Then:
|[?r]]id[) = [[F]Iid[) = dy C Z[start]
Step: w=7n'k for k= (u,_,v) edge.
Then:
by LH. for =

since [k]* monotonic

since Z solution :-))

Disappointment:

Are solutions of the constraint system just upper bounds ?7?

Disappointment:

Are solutions of the constraint system just upper bounds ?7?

Answer:

In general: yes :-(

167

Disappointment:

Are solutions of the constraint system just upper bounds ?7?

Answer:

In general: yes :-(
With the notable exception when all functions [k]* are distributive ...

)

The function [: 1y — Dy is called

o distributive, if [(| JX)=|{fx |z e X}forall() # X C Dy
e strict,if f L= 1.

e totally distributive, if f is distributive and strict.

sy

i

The function f:[4 — Dy is called

e distributive, if [(| JX)=|{fz |z e X}forall® # X CD;
e strict,if f1 = 1.

e totally distributive, if f is distributive and strict.

Examples:

e fr=znNaUb for abCU.

170

The function f:D; — [, iscalled
e distributive, if [(| |X)=|[{fx|x e X}forall() £ X C I
e strict,if f L= 1.

e (otally distributive, if f is distributive and strict.

Examples:
o fr=xrnaUb for abCU.
Strictness: f0=an@Ub=5b=10 whenever b=0 :(

Distributivity:

[Ums)

e Dh=D=NU{cc}, incz=z+1

e =D =NU {x} incr=x+1 e D=D=NU {x}, incr=x+1

Strictness: f 1l =incO=1 # 1 :« Strictness: f L =inc0=1 # L1 :
Distributivity: f(JX) = |[He+1|zeX} for 0#X Distributivity: f(JX) = |[JH{z+1|ze€X} for B#X
=) =)

o D =([NU{oo})? Dy=NU{occ} flow,m)=m1x +as

175 176

e D =Dy=NU{x}, incr=x+1 e Dh=D=NU{cc}, incz=z+1

Strictness: [l =inc0=1 # 1 Strictness: f 1l =inc0=1 # | :

Distributivity: f(JX) = |[He+1|zeX} for 0#X Distributivity: f(JX) = |[[H{z+1|ze X} for B#X

) =)

e DIy =(NU{oc})? Da=NU{x}, flo,2)=a1+a2: o Dy=(NU{x})? Dy=NU{cc}, fla,a)=1u1+x2:

Strictness: fL=0+0 = 0 =) Strictness: f1l=0+0 = 0 -)

Distributivity:

IL.J@ fa) = 8

Se=_ (1,4 U [f(4,1) =)

Remark: Remark:
If f:D; — Dy is distributive, then also monotonic :-) If f:D — D, isdistributive, then also monotonic :-)
Obviously: a b iff allb=Dh
179 180
Remark: Assumption: all v are reachable from start .
If f:D — Dy is distributive, then also monotonic :-)

Obviously: aC b iff alb=bh

From that follows:

fb = flalb)
= falUfb
— fa C fb)

181

182

Assumption: all v are reachable from start .
Then:
Theorem Kildall 1972
If all effects of edges [k]* are distributive, then: T v] = Z[v]
forall wv.
Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUIs for PCs.
183 184
Assumption: all v are reachable from start . Assumption: all v are reachable from start .
Then: Then:
Theorem Kildall 1972 Theorem Kildall 1972
If all effects of edges [k]* are distributive, then: I*[v] = Z[v] If all effects of edges [k]* are distributive, then: m Z[v]
forall v. forall wv. ¢
P
Proof:
vz X0 L L - I
It suffices to prove that Z* isasolution :-) —_
For this, we show that 7* satisfies all constraints :-))
183 186

(1) We prove for start : (1) We prove for srart :
I*[start] = | m: start =" start} T*[start] = U{[[ﬂ}]idg | w1 start =" start}
- J [[F]de[)
| d dy)
(2) Forevery k= {(u,_,v) weprove:
I*[e‘] = U{[[?rﬂjd[] | m o start —* E‘}
J U{[[?r'ﬁ'}]idn | 7' 2 start =% u}
= | H{IFP ([T do) | 7' = start —* u}
= [RF (U= do | 7" : start —* u})
K] (Z*[u])
since {7 |7 :start -* u} is non-empty :-)
187 188
Caveat: Caveat:
e Reachability of all program points cannot be abandoned! Consider: e Reachability of all program points cannot be abandoned! Consider:
7 inc 7 inc
where D= NU {cc} where D =NU {co}
Then:
Z[2] = incO0 = 1
2 = |y = 0
189 190

Caveat:

e Reachability of all program points cannot be abandoned! Consider:

\é inc 2

Then:

inc0

Lo

where D= NU{cc}

e Unreachable program points can always be thrown away :-)

191

Summary and Application:

» The effects of edges of the analysis of availability of expressions
are distributive:

(@U(xy Nag))\b

((aUz) N (aUxy)
(t

(fld 21)\b) N ((a U x2)\b)

\Lb=XNb

192

