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We are looking for solutions for systems of constraints of the form:

£ ; Jré(:rl' e "r‘u} (x)
where
‘ €T unknown here:  A[u]
D values here: 28w

C C DxI» | ordering relation here: D

‘ firDr =D constraint here: ‘

Constraint for  A[v] (v # start):

Al € (IR (Alu) |k = (u, _,v) edge}
Because:

xJdi A ANx Dde it w I, .. di} =)

A mapping f:Dy — Dy iscalled monotonic, if  f(a) C f(b) for
all aCb.

A mapping f:Dy; — Dy iscalled monotonic, if  f(a) T f(b) for
all aC b

Examples:

(1) D =Dy,=2Y forasetU and

Obviously, every such f is monotonic :-)




A mapping f:D; — Ds is called monotonic, if f(a) C f(b) for
all a C b

Examples:

(1) Dy=Dy,=2Y forasetUand fa=(rNa)Ub.
Obviously, every such f is monotonic :-)

(2) Iy = e = Z (with the ordering “<"). Then:

° incr =x+1 is monotonic.

e decxr=2—1 is monotonic.
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A mapping f:D; — Dy iscalled monotonic,is  f(a) C f(b) for
all aCb.

Examples:

(1) Dy=Dy,=2Y forasetUand fa=(rNa)Ub.
Obviously, every such f is monotonic :-)

(2) Iy = Ds = Z (with the ordering “<"). Then:

. incr=x-+1 is monotonic.
e decx=x—1 is monotonic.

° inve = —r is not monotonic :-)
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Theorem:

If fi:D,—-Dy, and f,:Dy — Dy are monotonic, then also
fQOJrl:[D}l—)'D;; Z*)

Theorem:

If fi:D,—>Dy, and f5:Dy— Dy are monotonic, then also
fgﬂ‘h:Dl%[D};; Z*)

Theorem:

If . isacomplete lattice, then the set [D; — Do] of monotonic
functions f: Dy — Ds is also a complete lattice where

fCg iff faCgxe forallz €D
T

(\J’:
S %%x:ugf" (e




Wanted:

minimally small solution for:

L x; 3 filwy,..o,xy), i=1,....n ()
where all  f; : D" — [ are monotonic.
For functions  f; x = a; N 2 U b;, the operations  “o™, “lJ” and “I"”
can be explicitly defined by:
) r = |aMNas|MT U[u.z mop U bz|
(filfo)r = |(qUas) | NaxU b Ub,y
(finfo)x = (e Ub) N (az Uba) ‘ﬁ U b Ny
o _ I (a MNRQ 5 ) {<>
( ?2 ’( y ) A= &, ’
8 -
a, N, PX UJla,n 'o
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Wanted: minimally small solution for: Wanted: minimally small solution for:
wi I filxy, .. xn)| i=1...n (%) x; J fileg,. o x,), t=1,....n ()
where all f; : D™ — [ are monotonic. where all f;: D" — [ are monotonic.
[dea: [dea:
e Consider : D" — D"  where e Consider F:D" — D" where
Fley,. .o e, =y, .., y.) with = filzq, ..., 20). Fley, ...,z = (..., y.) with gy = filxeq, ..., x,).
e [Ifall f, aremonotonic, thenalso F :-)
x N )
(xpy v %0 1580, - EP
'
Y & 9,
97 o8




Wanted: minimally small solution for:

where all f; : D® — D are monotonic.

[dea:

e Consider F:D" — D" where

Floy, . .oom,) =y, ooyn) with oy = filey, ..o r,).

e [Ifall f; are monotonic, thenalso F :-)

o  We successively approximate a solution. We construct:

1, F1, F?1, F%1

Hope: We eventually reach a solution ... 77?7

Wanted: minimally small solution for:

x; 3 filwy,..o,xy), i=1,....n

where all  f; : D" — [ are monotonic.

Idea:
e Consider F:D" — D" where
Flaoy,...,x,) = (..., yn) with

e Ifall f; are monotonic, thenalso F

Yi = Jra’.("rl: trt :rlu)-

)

X 3+

(xéf_fb‘q>

99 o8
Wanted: minimally small solution for: Example: D =2iebel £ =C
xp A filxey,. .o x,), i=1,...,n (%)
whereall f;: D" — D are monotonic. r 2 {a}Ua
To 2O 13N {rt, fJ}
Trg 2 1 U {:}

Idea:

e Consider [F:D" — D" where

Fley,. .o e, =y, .., y.) with = filzq, ..., 20).

e [Ifall f; are monotonic, thenalso F :-)

e  We successively approximate a solution. We construct:

I I L Y

Hope: We eventually reach a solution ... 77?7
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Example: D =2olabe} C=C

Example: O =2lebe C=C

¥ 2 {(r}U:r:;;Qf T 2 {H}UQ
xo 2 @ﬁ{u.b} 2 2 @3N {a,b}
Ty 2 ﬁU{r} Ty 2 Q],U {:}
The Iteration: The Iteration:
L Jola] 2 [ 3 [4] ol 2 | 3 [4]
w1 || @2 vy || 0] {a} |S¢C
e nlo] 0| &
. 0fc? w0l ]a e
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Example: D =2labet C=C Example: D =2lebe C=C
x 2 {(r}UﬂfG xy 2 {a}Uas
Ta QQﬁﬂ{u,l’;} To 2 :r;gﬂ{n,h}
Ty 2 :r:lu{:'}

Ty 2D & U{('}
20

The Iteration:

H DR ENENEY
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The Iteration:

HOENENEREY
1 || 0| {a} | {a,c} | {a,c} | dito
x ||O] 0 ] {a}
a3 || 0] {c} | {a.c} | {a,c}
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Theorem

o L FLF21,. ..

e If all ascending chains ar

form an ascending chain :

a solution is obtained which is the least one

always exists.

Theorem

e |, F1,F?1,... form anascending chain:

1l C FL C FL C

o If FF1 =F"'1, asolutionis obtained which is the least one
)
e If all ascending chains are finite, sucha £ always exists.
Y
\
:; “ o3 { -:1_— - _L-

The first claim follows by complete induction:

Proof

Foundation: ¥° | = 1L C F'1 :)
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Step: Assume

Fi~l'] C Fil. Then

Fil = F(F 1) I;EIL

Step: Assume F' 1 C F'1. Then
I;.EL — (1;.5 1£) ; 1;([;.&£) :Iﬂlllé

since [7 monotonic :-)

Conclusion:

If D is finite, a solution can be found which is definitely the least :-)

Question:

What, if D is not finite 777

19




Theorem

e |, F1,F?1, .. form anascending chain :

L £ FL C F'L C

o If FFL=FFM'1_  asolution is obtained which is the least one
=)

e  If all ascending chains are finite, sucha /£ always exists.

Proof
The first claim follows by complete induction:

Foundation: F° | = 1 C F' 1 :-)
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Step: Assume

Conclusion:

If [ is finite, a solution can be found which is definitely the least

Question:

What, if

_F.i 1; E Iﬂé.

Then
I‘”'L = F (1;.’. 1£) E 1;(1;.’.£) :I,-LIJ.;

since [ monotonic :-)

D is not finite 777
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Theorem Knaster — Tarski

Assume [0 is a complete lattice. Then every monotonic function
f:D — D hasaleast fixpoint dy € .

Let P={deD| fdCd}.

Then dy=[]P

110

Bronistew Knoater (1895-1980), toplogy




Theorem Knaster — Tarski

Assume [ is a complete lattice. Then every monotonic function
f:D—=D ha fxpoint dy € D.

]
Then dy=[]PF
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Theorem Knaster — Tarski

Assume [ is a complete lattice. Then every monotonic function
f:DD— D hasaleast fixpoint dy € D.

Let P={deD| fdCd}.

Then d[,zl‘lp’.>< QEX

Proof:
() dyeP:
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Theorem Knaster — Tarski
Assume [0 is a complete lattice. Then every monotonic function
f:D — D hasaleast fixpoint dy € .

Let P={deD| fdCd}.

Then dy=[]P

Proof:
(1) dy € P
fdoC fdEd foralld e P
——  fdy isalower bound of P
— fdyCdy sincedy=[]P
— dypeP =)
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(2) fdy=dy:

114




(2) Jdy=dy: ) fdo=dy:
Jdo Sdy [by (1) fdo©dy by (1)
_— fifr][;l dy || by monotonicity of f — f(fdo) C fdyp by monotonicity of f
= fd, el == fdyeP
== | dyC fdy and the claim follows :-) == dyC fdy and the claim follows :-)
3 dy  is least fixpoint:
115 116
2y fdy=dy: Remark:
JdyTdy by (1)
o 1 - : te > - .
. f(fdo)C fdo by monotonicity of f The least fixpoint d, isin P andalower bound :-)
—  fdyeP —— d, istheleast value x with = 3 fux
== dy C fd, and the claim follows :-)
(3) dy  is least fixpoint:

fdy =dy Cdy an other fixpoint
= fh cP

= dyCd, =)
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Remark:

The least fixpoint d, isin P and alower bound :-)

== d, istheleast value x with = J fz

Application:

Assume x; 3 filwer,. .o x,), t=1,...,n (%)

is a system of constraints where all  f; : D" — [ are monotonic.
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Remark:

The least fixpoint dy isin P and alower bound :-)

== d, istheleastvalue x with = 3 fa

Application:

Assume e = filer, ..., xn), i=1,...,n (%)

is a system of constraints where all  f; : D" — [ are monotonic.

—— least solution of (+) = least fixpoint of F* :-)
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Example 1: D=2V, fz=a2nNaUb

Example 1: D=2V, fa=znNaUb

FLELPET
o0 | U

2




Example 1: D=2Y, fa=znaUb

—
Il
>
S

Example 1: D =2v,

48
U

FLfEL T flL T

0 0 i 0o 0 U
L1

1 alUb 1 b laUb

2 alb 2 b laUb

—X<
—{’

Example 2: D =NU{oco}
Assume fax =x + 1. Then

fl=f0=i [ i+l=/f""1
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Conclusion: Example 1: D=2V, fr=zNaUb

Systems of inequations can be solved through fixpoint iteration, i.e., by
repeated evaluation of right-hand sides :-)

Example 2: D =NuU{occ}
Assume fx =z + 1. Then

fl=fo=i C i+l1=f"1

——> Ordinary iteration will never reach a fixpoint :-(

——— Sometimes, transfinite iteration is needed :-)




Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by
repeated evaluation of right-hand sides :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by
repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(
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Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by
repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by
repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

{1}
Expr
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Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by
repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

1 2 3 4 5
0 1] [ 0 0
1| {Lz>1z—1} {1} {1} {1}
2 Ezpr {l,z > 1,z —1} {1,z > 1} {l,z = 1}
3| {Le > L,z —1} | {La>1La—1} | {l,a> 1,2 —1} | {1,z > 1} | dito
" {1} {1} {1} (1}
5 Ezpr {l,z>1,z—1} {1,z > 1} {1,z > 1}




