Script generated by TTT

Title: Seidl: Programmoptimierung (28.10.2013)

Date: Mon Oct 28 14:01:08 CET 2013

Duration: 88:10 min

Pages: 48

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

where:

x_i	unknown	here:	$\mathcal{A}[\underline{u}]$
D	values	here:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i \colon \mathbb{D}^n \to \mathbb{D}$	constraint	here:	

Constraint for A[v] $(v \neq start)$:

$$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} (\mathcal{A}[u]) \mid k = (u,_,v) \text{ edge} \}$$

Because:

$$x \supseteq d_1 \land \ldots \land x \supseteq d_k \quad \text{iff} \quad x \supseteq \bigsqcup \{d_1, \ldots, d_k\}$$
 :-)

87

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1)
$$\mathbb{D}_1 = \mathbb{D}_2 = 2^U$$
 for a set U and $f(x) = (x \cap a) \cup b$.
Obviously, every such f is monotonic :-)

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic:
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering "\le \cdot"). Then:
 - inc x = x + 1 is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.

90

Theorem:

If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-)

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic:-)
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering "\le "). Then:
 - inc x = x + 1 is monotonic.
 - dec x = x 1 is monotonic.
 - inv x = -x is not monotonic :-)

91

Theorem:

If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

 $f \sqsubseteq g$ iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

UF = 9

gx=[]{fx (fest}

For functions $f_i x = a_i \cap x \cup b_i$, the operations " \circ ", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_2 \circ f_1) x = a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2$$

$$(f_1 \cup f_2) x = (a_1 \cup a_2) \cap x \cup b_1 \cup b_2$$

$$(f_1 \cap f_2) x = (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2$$

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

96

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $F(x_1,\ldots,x_n)=(y_1,\ldots,y_n)$ with $y_i=f_i(x_1,\ldots,x_n)$.

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $F(x_1, \dots, x_n) = (y_1, \dots, y_n)$ with $y_i = f_i(x_1, \dots, x_n)$.
- If all f_i are monotonic, then also F:-)

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

- If all f_i are monotonic, then also F:-)
- We successively approximate a solution. We construct:

$$\perp$$
, $F \perp$, $F^2 \perp$, $F^3 \perp$, ...

Hope: We eventually reach a solution ... ???

99

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

• If all f_i are monotonic, then also F:-)

98

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

- If all f_i are monotonic, then also F:-)
- We successively approximate a solution. We construct:

$$\underline{\perp}$$
, $F\underline{\perp}$, $F^2\underline{\perp}$, $F^3\underline{\perp}$, ...

Hope: We eventually reach a solution ... ???

Example: $\mathbb{D} = 2^{\{a,b,c\}}, \subseteq \subseteq$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq A \cap \{a, b\}$$

$$x_3 \supseteq A \cup \{c\}$$

$$x_2 \supseteq \mathcal{O} \cap \{a, b\}$$

$$x_3 \supseteq \overset{\sim}{\beta} \cup \{c\}$$

The Iteration:

	0	1	2	3	4
x_1	Ø	1997			
x_2	Ø	'Q'			
x_3	Ø	}c			

101

Example:

$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup \mathcal{C}$$

$$x_2 \supseteq \mathbf{Q}_3 \cap \{\mathbf{a}, \mathbf{b}\}$$

$$x_3 \supseteq \mathbf{Q}_1 \cup \{c\}$$

The Iteration:

	0	1	2	3	4
x_1	Ø	{ <u>a</u> }	9/0		
x_2	Ø	Ø	Ø		
x_3	Ø	{ <i>c</i> }	Q10		

102

Example:

$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup \mathcal{G}_{3}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

103

Example:

$$\mathbb{D}=2^{\{a,b,c\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{\boldsymbol{a}, \boldsymbol{b}\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

	0	1	2	3	4
x_1	Ø	{ a }	$\{a,c\}$	$\{a,c\}$	dito
x_2	Ø	Ø	Ø	{ a }	
x_3	Ø	{ <i>c</i> }	$\{a,c\}$	$\{a,c\}$	

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain :

$$\perp \sqsubseteq F \perp \sqsubseteq F^2 \perp \sqsubseteq \dots$$

- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

106

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$ since F monotonic :-)

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain :

$$\underline{\bot} \quad \sqsubseteq \quad F \underline{\bot} \quad \sqsubseteq \quad F^2 \underline{\bot} \quad \sqsubseteq \quad \dots$$

- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation:
$$F^0 \perp = \perp \sqsubseteq F^1 \perp :$$
-)

107

Step: Assume
$$F^{i-1} \perp \sqsubseteq F^i \perp$$
. Then
$$F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$$
 since F monotonic :-)

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least :-)

Question:

What, if
$$\mathbb{D}$$
 is not finite ???

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain :

$$\perp$$
 \sqsubseteq $F \perp$ \sqsubseteq $F^2 \perp$ \sqsubseteq ...

- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one
- If all ascending chains are finite, such a *k* always exists.

Proof

The first claim follows by complete induction:

Foundation:
$$F^0 \perp = \perp \sqsubseteq F^1 \perp :$$

107

Knaster - Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let
$$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$

Then
$$d_0 = \prod P$$
.

Theorem

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F\left(F^{i-1} \perp\right) \sqsubseteq F\left(F^i \perp\right) = F^{i+1} \perp$

since F monotonic :-)

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least :-)

Question:

What, if \mathbb{D} is not finite ???

109

Bronisław Knoster (1893-1980), topology

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let
$$P \subseteq \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$

Then $d_0 = \prod P$.

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let
$$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$

Proof:

(1) $d_0 \in P$:

112

110

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let
$$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$

Then
$$d_0 = \prod P$$
.

Proof:

(1)
$$d_0 \in P$$
:

$$f d_0 \sqsubseteq f d \sqsubseteq d$$
 for all $d \in P$

$$\implies f d_0$$
 is a lower bound of P

$$\implies f d_0 \sqsubseteq d_0 \text{ since } d_0 = \prod P$$

$$\implies d_0 \in P$$
 :-

:-)

(2) $f d_0 = d_0$:

(2)
$$f d_0 = d_0$$
:
$$f d_0 \sqsubseteq d_0 \text{ by (1)}$$

$$\implies f f d_0 \sqsubseteq f d_0 \text{ by monotonicity of } f$$

$$\implies f d_0 \in P$$

$$\implies d_0 \sqsubseteq f d_0 \text{ and the claim follows :-}$$

$$\begin{split} f\,d_0 &= d_0: \\ &\qquad \qquad f\,d_0 \sqsubseteq d_0 \quad \text{by} \quad \text{(1)} \\ &\Longrightarrow \qquad f(f\,d_0) \sqsubseteq f\,d_0 \quad \text{by monotonicity of } f \\ &\Longrightarrow \qquad f\,d_0 \in P \\ &\Longrightarrow \qquad d_0 \sqsubseteq f\,d_0 \qquad \text{and the claim follows} \quad \text{:-)} \end{split}$$

(3) d_0 is least fixpoint:

Remark:

(2)
$$f d_0 = d_0$$
:
 $f d_0 \sqsubseteq d_0$ by (1)
 $\implies f(f d_0) \sqsubseteq f d_0$ by monotonicity of f
 $\implies f d_0 \in P$
 $\implies d_0 \sqsubseteq f d_0$ and the claim follows :-)

115

(3) d_0 is least fixpoint: $f d_1 = d_1 \sqsubseteq d_1 \quad \text{an other fixpoint}$ $\Longrightarrow \quad d_1 \in P$ $\Longrightarrow \quad d_0 \sqsubseteq d_1 \qquad :-))$

The least fixpoint d_0 is in P and a lower bound :-) $\longrightarrow d_0$ is the least value x with $x \supseteq f x$

116

Remark:

The least fixpoint d_0 is in P and a lower bound :-)

 \implies d_0 is the least value x with $x \supseteq f x$

Application:

Assume
$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

is a system of constraints where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

119

Example 1: $\mathbb{D} = 2^U$, $f x = x \cap a \cup b$

Remark:

The least fixpoint d_0 is in P and a lower bound :-)

 \implies d_0 is the least value x with $x \supseteq f x$

Application:

Assume
$$x_i = f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

is a system of constraints where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

 \implies least solution of (*) == least fixpoint of F:-)

Example 1:
$$\mathbb{D} = 2^U$$
, $f x = x \cap a \cup b$

$$\begin{array}{c|cccc}
f & f^k \perp & f^k \top \\
\hline
0 & \emptyset & U
\end{array}$$

Example 1: $\mathbb{D} = 2^U$, $f x = x \cap a \cup b$

	\subseteq	\supseteq
f	$\int f^k \perp$	$f^k \top$
0	Ø	Ц
1	(b)	$a \cup b$
2	$ \binom{b}{b} $	$(a \cup b)$
	1	不
	I .	- }

Example 1: $\mathbb{D} = 2^U$, $f x = x \cap a \cup b$

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Assume f x = x + 1. Then

$$f^i \perp = f^i \, 0 = i \quad \square \quad i+1 = f^{i+1} \perp$$

125

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

124

Example 1: $\mathbb{D} = 2^U$, $f x = x \cap a \cup b$

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Assume f x = x + 1. Then

$$f^i \perp = f^i \, 0 = i \quad \square \quad i+1 = f^{i+1} \perp$$

- → Ordinary iteration will never reach a fixpoint :-(
- ⇒ Sometimes, transfinite iteration is needed :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

128

127

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

 $\frac{Expr}{\text{Mortor}} \left\{1, \times > 1, \times - 1\right\}$

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3	4	5
0	Ø	Ø	Ø	Ø	
1	$\{1, x > 1, x - 1\}$	{1}	{1}	{1}	
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	dito
4	{1}	{1}	{1}	{1}	
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	