Script generated by TTT

Title: Seidl: Programmoptimierung (23.10.2013)

Date: Wed Oct 23 08:34:20 CEST 2013

Duration: 85:44 min

Pages: 42

Example:

$$x = y+3;$$

$$x = 7;$$

$$z = y+3;$$

... analogously for R = M[e]; and $M[e_1] = e_2$;.

Transformation 1.2:

If e is available at program point u, then e need not be re-evaluated:

$$U \\ T_e = e;$$

$$e \in \mathcal{A}[u]$$

$$\vdots$$

$$\vdots$$

We replace the assignment with Nop:-)

47

Example:

$$x = y+3;$$

$$x = 7;$$

$$z = y+3;$$

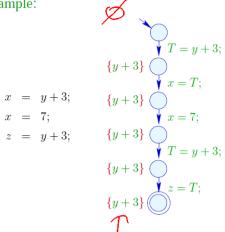
$$x = 7;$$

$$z = T;$$

$$z = T;$$

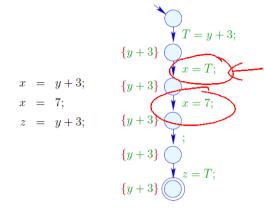
$$z = T;$$

Example:



50

Example:



51

Correctness: (Idea)

Transformation 1.1 preserves the semantics and $\mathcal{A}[u]$ for all program points u:-)

Assume $\pi: start \to^* u$ is the path taken by a computation. If $e \in \mathcal{A}[u]$, then also $e \in [\![\pi]\!]^\sharp \emptyset$.

Therefore, π can be decomposed into:

$$\underbrace{\text{start}}^{\pi_1} \underbrace{u_1}^{k} \underbrace{u_2}^{\pi_2} \underbrace{u}$$

with the following properties:

- The expression e is evaluated at the edge k;
- The expression e is not removed from the set of available expressions at any edge in π_2 , i.e., no variable of e receives a new value :-)

The register T_e contains the value of e whenever u is reached :-)

Warning:

Transformation 1.1 is only meaningful for assignments x = e; where:

- $x \notin Vars(e);$
- $e \notin Vars$;
- the evaluation of e is non-trivial :- }

Which leaves us with the following question ...

Question:

How can we compute A[u] for every program point u??

We collect all restrictions to the values of $\mathcal{A}[u]$ into a system of constraints:

$$\mathcal{A}[start] \subseteq \emptyset$$

$$\mathcal{A}[v] \subset [\![k]\!]^{\sharp} (\mathcal{A}[u])$$

$$k = (u, _, v)$$
 edg

$$A[v] \subseteq [k]^{\sharp}(A[u]) \qquad k = (u, _, v) \text{ edge}$$

$$A[v] = \bigcap_{i=1}^{n} \{[2]^{\sharp}(u)\} = \{[2]^{\sharp}(u, _, v)\}$$

Question:

How do we compute A[u] for every program point u??

57

Question:

How can we compute $\mathcal{A}[u]$ for every program point u??

We collect all restrictions to the values of $\mathcal{A}[u]$ into a system of constraints:

$$\mathcal{A}[start] \subseteq \emptyset$$

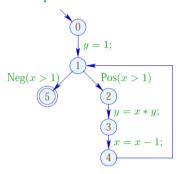
$$\mathcal{A}[v] \qquad \subseteq \ [\![k]\!]^{\sharp} \left(\mathcal{A}[u]\right) \qquad \qquad k = (u,_,v) \quad \text{edge}$$

$$\mathbf{k} = (\mathbf{u}, _, \mathbf{v})$$
 edge

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

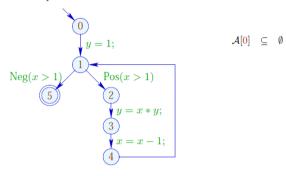


59

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

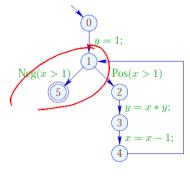


60

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:



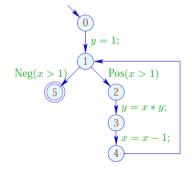
- $\mathcal{A}[0] \subseteq \emptyset$
- $A[1] \subseteq (A[0] \cup \{1\}) \backslash Expr_y$
- $\mathcal{A}[1] \subseteq \mathcal{A}[4]$
- $\mathcal{A}[\mathbf{2}] \quad \subseteq \quad \mathcal{A}[\mathbf{1}] \cup \{x > 1\}$
- $\mathcal{A}[\mathbf{3}] \quad \subseteq \quad (\mathcal{A}[\mathbf{2}] \cup \{x * y\}) \backslash \mathit{Expr}_y$
- $A[4] \subseteq (A[3] \cup \{x-1\}) \setminus Expr$
- $\mathcal{A}[5] \subseteq \left(\mathcal{A}[1] \cup \{x > 1\} \right)$

65

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:



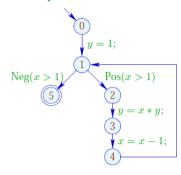
Solution:

$$\mathcal{A}[0] = \emptyset
\mathcal{A}[1] = \{1\}
\mathcal{A}[2] = \{1, x > 1\}
\mathcal{A}[3] = \{1, x > 1\}
\mathcal{A}[4] = \{1\}
\mathcal{A}[5] = \{1, x > 1\}$$

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:



Solution:

$$A[0] = \emptyset$$
 $A[1] = \{1\}$
 $A[2] = \{1, x > 1\}$
 $A[3] = \{1, x > 1\}$
 $A[4] = \{1\}$
 $A[5] = \{1, x > 1\}$

66

Observation:

• The possible values for A[u] form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

67

Observation:

• The possible values for $\mathcal{A}[u]$ form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

• The functions $[\![k]\!]^{\sharp}:\mathbb{D}\to\mathbb{D}$ are monotonic, i.e.,

$$\llbracket k \rrbracket^{\sharp}(B_1) \sqsubseteq \llbracket k \rrbracket^{\sharp}(B_2)$$
 whenever $B_1 \sqsubseteq B_2$

Observation:

• The possible values for $\mathcal{A}[u]$ form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

• The functions $[\![k]\!]^{\sharp}:\mathbb{D}\to\mathbb{D}$ are monotonic, i.e.,

$$\llbracket k \rrbracket^{\sharp}(B_1) \sqsubseteq \llbracket k \rrbracket^{\sharp}(B_2)$$
 whenever $B_1 \sqsubseteq B_2$

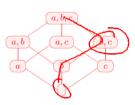
Background 2: Complete Lattices

A set $\mathbb D$ together with a relation $\qquad \sqsubseteq \subseteq \mathbb D \times \mathbb D \qquad$ is a partial order if for all $a,b,c\in \mathbb D$,

 $\begin{array}{ll} a \sqsubseteq a & reflexivity \\ a \sqsubseteq b \wedge b \sqsubseteq a \implies a = b & anti-symmetry \\ a \sqsubseteq b \wedge b \sqsubseteq c \implies a \sqsubseteq c & transitivity \end{array}$

Examples:

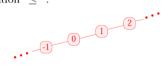
1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation " \subseteq ":



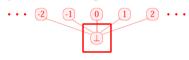
69

2. \mathbb{Z} with the relation "=":

3. \mathbb{Z} with the relation " \leq ":



4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering:



70

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

 $d\in\mathbb{D} \text{ is called upper bound for } X\subseteq\mathbb{D} \text{ if }$

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- $1.\,\,d$ is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\ldots$

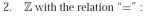
73

A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D}$ has a least upper bound $| | X \in \mathbb{D}$.

Note:

Every complete lattice has

- a least element $\perp = | |\emptyset | \in \mathbb{D};$
- a greatest element $T = | | \mathbb{D} \in \mathbb{D}$.



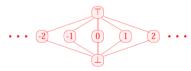
• • • (-2) (-1) (0) (1) (2) • • •

3. \mathbb{Z} with the relation " \leq ":

4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering

Examples:

- 1. $\mathbb{D} = 2^{\{a,b,c\}}$ is a cl :-)
- 2. $\mathbb{D} = \mathbb{Z}$ with "=" is not.
- 3. $\mathbb{D} = \mathbb{Z}$ with " \leq " is neither.
- 4. $\mathbb{D} = \mathbb{Z}_{\perp}$ is also not :-(
- 5. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top} = \mathbb{Z} \cup \{\bot, \top\} :$



We have:

Theorem:

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

We have:

Theorem:

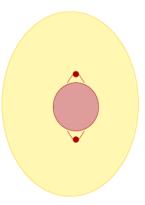
If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

Proof:

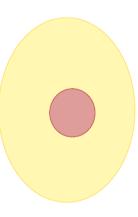
Construct $U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}.$ // the set of all lower bounds of X:-)

77

76



83



We have:

Theorem:

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

Proof:

```
Construct U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}. // the set of all lower bounds of X:-)
```

77

We have:

Theorem:

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

Proof:

```
Construct U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}. // the set of all lower bounds of X:-) Set: g:=\bigsqcup U Claim: g=\bigcap X
```

78

(1) g is a lower bound of X:

```
Assume x \in X. Then: u \sqsubseteq x for all u \in U \implies x is an upper bound of U \implies g \sqsubseteq x :-)
```

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

Proof:

```
Construct U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}. // the set of all lower bounds of X:-) Set: g:=\bigsqcup U Claim: g=\bigcap X
```

78

Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ x is an upper bound of U $g \sqsubseteq x$:-)

79

(1) q is a lower bound of X:

Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ \implies x is an upper bound of U \implies $g \sqsubseteq x$:-)

(2) g is the greatest lower bound of X:

Assume u is a lower bound of X. Then: $u \in U$ \Longrightarrow $u \sqsubseteq g$:-))

80

We are looking for solutions for systems of constraints of the form:

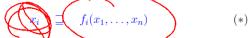
$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

We are looking for solutions for systems of constraints of the form:

where:

84

We are looking for solutions for systems of constraints of the form:



where:

x_i	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	2^{Expr}
\sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$	ordering relation	here:	⊇
$f_i : \mathbb{D}^n \to \mathbb{D}$	constraint	here:	

Constraint for A[v] $(v \neq start)$:

$$\mathcal{A}[v]$$
 $\subseteq \bigcap \{ [\![k]\!]^{\sharp} (\mathcal{A}[u]) \mid k = (\mathbf{u}, \underline{\ }, v) \text{ edge} \}$

86

A mapping $f:\mathbb{D}_1\to\mathbb{D}_2$ is called monotonic, if $f(a)\sqsubseteq f(b)$ for all $a\sqsubseteq b$.

88

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

where:

$$x_i$$
 unknown here: $\mathcal{A}[u]$
 \mathbb{D} values here: 2^{Expr}
 $\mathbb{C} \subseteq \mathbb{D} \times \mathbb{D}$ ordering relation here: \supseteq
 $f_i \colon \mathbb{D}^n \to \mathbb{D}$ constraint here: ...

Constraint for A[v] $(v \neq start)$:

$$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ edge} \}$$

Because:

$$x \supseteq d_1 \land \ldots \land x \supseteq d_k \quad \text{iff} \quad x \supseteq \bigsqcup \{d_1, \ldots, d_k\} \qquad :-)$$