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Example: 56
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Example:

r = y+3;
r = 7
z = y+3;

Correctness: (Idea)

Transformation 1.1 preserves the semantics and .A[u] for all program
points u  :-)

Assume 7 : start —* u is the path taken by a computation.

If e € Alu], then also e € [x]* (.

Therefore, 7 can be decomposed into:

T~k T
e | e 70 )
(start \U1) \U2, )

with the following properties:

e  The expression e is evaluated at the edge k;

e  The expression e is not removed from the set of available
expressions at any edge in 72, i.e., no variable of e receives a new
value )

The register T, contains the value of ¢ whenever u is reached :-))




Warning; Question:

How do we compute Afu] for every program point u 77
Transformation 1.1 is only meaningful for assignments = = ¢; where:
—  x & Vars(e);
— e & Vars:
—  the evaluation of e is non-trivial :- |
Which leaves us with the following question ...
56 57

Question: Question:
How can we compute Alu] for every program point . 77 How can we compute A[u] for every program point w77
We collect all restrictions to the values of A[u] into a system of We collect all restrictions to the values of A[x] into a system of
constraints: constraints:

Alstart] C @ Alstart] C 0

Alv] C K] (Aful) k= (u,_,v) edge Alv] C [K]* (Afu]) k= (u,_,v) edge

Al = (SEIHE) €}




Wanted:
e amaximally large solution (?7)

e an algorithm which computes this  :-)

Example:

Wanted:
e amaximally large solution (??)

e an algorithm which computes this

Example:
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Wanted: Wanted:
e amaximally large solution (77) e amaximally large solution (77)
¢ an algorithm which computes this  :-) e  an algorithm which computes this
Example: Example:
\\m/fl\? Solution:
o A
A0 € 9 w_ 1
A1l € (A[0]U{1})\Ezpr, 1 Al = ¢
Al C A Neg(z > i/\ \{ > 1) Al = {1}
AiQi c A_IV_V‘J {x ‘1}\ ‘\Q/‘ .\72) A2 = {1,z>1}
AB] € (AR2]U{z = y})\ Ezpr, i;,: ; AR = {Lz>1)
Al C (AL 1))\ Brpr, ® Al = (1)
Als] € ,_L-‘":"'—]: A = {1,z>1}
I\;_ljei




Wanted: Observation:

¢ amaximally large solution (77)

e an algorithm which computes this ~ :-) e  The possible values for .A[u] form a complete lattice:
D= 2.”}1})7" with B] E Bz iff Bl 2 B-)_

Example: T ™

Il
=

Al0]
Al = {1}
Al2] = {1,z =1}
ARl = {Lz>1}
Al = {1}
Al = {lL,z>1}
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Observation: Observation:
e  The possible values for A[u] form a complete lattice: e  The possible values for A[u] form a complete lattice:
D =287 with B,CB, if B, 2B, D=2 with B,CB, iff B, 2R,
e The functions [k]f: D — D are monotonic, i.e., e The functions [k]*: D — D are monotonic, i.e.,
[K]}(B)) C [k]*(B2) whenever By C B, [E)*(By) C [K]*(B:) whenever By C By




Background 2: Complete Lattices

A set D together with arelation C C DxD

all a, b, c e I,

a a

aCbAbCa = a=10
aCbAbCe = alec

Examples:

1. D = 2ia5e with the relation “C” :

reflexivily
anti—symmetry

transitivity

a,b

is a partial order if for

2. Z with the relation "=":

3. Z with the relation <"

[xX)

4. Z, = Z U {1} with the ordering:

@) @ @O 1O @
! .

d € D is called upper bound for X C D if

rCd forallz e X

’

d € D is called upper bound for X C D if

rCd forallz e X

d is called least upper bound (lub) if
1. d is an upper hound and

2. d C y for every upper bound y of X.




d € D is called upper bound for X C I if

zCd forallz € X 2. Zwith the relation "=":
2 1 (0 1 2
d is called least upper bound (lub) if
1. d is an upper bound and 3. Z with the relation "<”
2. d C y for every upper bound y of X. T 2)
: 0}
IS )
Caveat: \
e {0,2,4,...} C Z hasno upper bound! 4. Z, =ZU{Ll}withth IP‘{“T}%
e {0,2,4} C Z has the upper bounds 4, 5,6, . .. e 2 '1". Y
73 70
Examples:
A complete lattice (cl) T is a partial ordering where every subset L D=2 isac -
X CD hasaleastupperbound || X eD 2 I = 7 with “=" is not.
'I\ 3. D = Z with “<" is neither.
Note: 4. D=7, isalso not :-(
5. With an extra element T, we obtain the flat lattice

Every complete lattice has

— aleastelement L =[]0 eD;

— agrealestelement T =||D <D.

O] ]

ZT=ZU{Ll,T}




We have:

Theorem:

If D isacomplete lattice, then every subset X C I has a greatest
lower bound []X.

We have:

Theorem:

If D isacomplete lattice, then every subset

lower bound

Proof:

Construct

//

//

%

U={ueD|VeeX: vl z}.

the set of all lower bounds of X

XCD

=)

has a greatest

83
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We have:

We have:

Theorem: Theorem:
If D isacomplete lattice, then every subset X C I has a greatest If D isacomplete lattice, then every subset X C I has a greatest
lower bound []X. lower bound []X.
Proof: Proof:
Construct U={ueD|YzeX: ulz}. Construct U={ueD|vVzeX: ula}
//  the set of all lower bounds of X' :-) // the set of all lower bounds of X :-)
Set: g:=U
Claim: ¢g=[]X
7 78
(1)  gisalower bound of X : We have:
Assume z € X Then: Theorem:
wCxforalluelU
. zisan upper bound of U/ If D isacomplete lattice, then every subset X C D has a greatest
lower bound []X.
— gL=x :-)
Proof;
Construct U={ueD|¥YzeX: vl z}.
// the set of all lower bounds of X :-)

Set:

Claim:

g:=U
g=[1X




lower bound of X : (1) g isalower bound of X :

z € X. Then: Assume =z € X. Then:

uCaforalucU uCaxforallu e U

x is an upper bound of U

)

——  xis an upper bound of U/
gLl x — gLl x )

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:

uel»'

— ulgyg )
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We are looking for solutions for systems of constraints of the form: We are looking for solutions for systems of constraints of the form:

3 filzrn.w,) (*)
where:

unknown here:

values

ordering relation Iu!%
il

constraint here:

B84
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; unknown here:  Afu]
D values here:  2F=r
C C DxD | ordering relation here: 2

foD =D constraint here:

(

Constraint for_ A[v

]
&

EJ* (A[u]) | k= (u, ,v) edge}

v £ s
Al
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We are looking for solutions for systems of constraints of the form:

x; 4 f?(‘E:I: ----- Tn) (*)
where:
x; unknown here:  A[u]
D values here: 2%zt

C C DxD | ordering relation here: O

fiD® — D constraint here:

Constraint for  Afv] (v # start):
Afo] C ﬂ{[[ﬁ]]u (Alu]) | k= (u, ,v) edge}
Because:

e ddyA oAz Dd, it x 2| {di, ..., di}

A mapping f:I; — Dy s called monotonic, if  f(a) C f(b) for
all aC b
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