Script generated by TTT

Title: Seidl: Programmoptimierung (21.10.2013)
Date: Mon Oct 21 14:02:56 CEST 2013

Duration: 88:59 min

Pages: 33
Problem: Identify repeated computations!
Example:
z = 1
y = M[7];

A: T o= Ytz
B: Ty = E

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then
—» store it after the first computation;

— replace every further computation through a look-up!

== Availability of expressions

—— Memoization

Note:

B is a repeated computation of the value of |y + z |, if:
(1) Ais always executed before B; and

(2) y and z at B have the same values as at A :-)

—— We need:

> anloperational|semantics :-)

0 L .
> a method which identifies at least some repeated computations ...

Note:

B is a repeated computation of the value of |y + z |, if:
(1) Ais always executed before B; and
(2) y and z at B have the same values asat A :-)

—— We need:

> an operational semantics :-)

> a method which identifies at least some repeated computations ...

Thereby, represent:

vertex | program point

start programm start
stop program exit

edge step of computation

Background 1: An Operational Semantics

we choose a small-step operational approach.
Programs are represented as control-flow graphs.

In the example:

(start)
(start)

T Ay =Ag+ 1%

)]

Y = M A
@)

\

¥ Ax=Aot+1vds
O
1

(
Jeo (R ~, » B NN
Neg (R, > R2) >~

Ry AL
§ As= Ao+ 1x5;

"_; /

e

—4
(stop
\>oP)

Thereby, represent:

vertex | program point

start programm start

stop program exit

edge step of computation

Edge Labelings:
Test : Pos (¢e) or Neg (e)
Assignment: R =e¢;
Load : R = Mle];
Store : Mle,] = es;
Nop :
7

Computations follow paths.

v = M A]

Computations transform the current state

s={(p,p)

where:

p: Vars — int

n @% int

contents of registers

contents of storage

Every edge k = (u, lab, v) defines a partial transformation

[k] = [lab]

of the state:

1 (p.) = (p,p)

[Pos(e)] (p,) = (p.p) if [e p#0

[Neg(e)] (p.pr) = (p.p) if [e] p=0
// le] + evaluation of the expression e, e.g.

Yo le+yl{z—Ty— -1} =6

/

30

(e 1) = (pu)

[Pos(e)] (p.p1) = (p.1) if [e](p) 0

[Neg (e)] (o, 1) = (o, 11) if [/)= 0

[1(p. 1) = (p,m)

[Pos (e)] (p, 1) = (p.p) if [e] p#0

[Neg (e)] (p,1r) = (p, 1) if [e] p=0
// le] : evaluation of the expression e, e.g.

Yoy {z— T,y —1} =6
I Mz ==4]{z—5}=1

[R=e](pp) = (p@ {mr‘ﬂ P})
T

// where “©” modifies a mapping at a given argument

% X B A g “”33@ %('?3

10, 1) = (p.p)

[Pos(e)] (p. 1) = (p,p) if [e] p#0

[Neg(e)] (p.11) = (p.11) iffef p=0
// [e] : evaluation of the expression e, e.g.

/o [e+ul{z =Ty~ -1} =6
/o Me==4)]{z—5}=1

EXHW,DHW

1 (p.) = (p,p)

[Pos(e)] (p,) = (p.p) if [e p#0

[Neg(e)] (p.pr) = (p.p) if [e] p=0
// le] + evaluation of the expression e, e.g.

/oyl {z = Ty— -1} =6
Y Me==A)]{z—5}=1

[R=¢e;](p.p) = (.fJGP{H*—)H('HP}J")

// where “@” modifies a mapping at a given argument

[R=Me:1(p.) = (po{R—n(le]p)},m)

[Mled] = eas] (p, 1) = (ﬂ«\ﬂ%‘{[[f'lﬂﬁH[[f'z]lﬁ}\)

1’\

Example:

[r=z+1;]({z—5}, 1) = (p,) where:

p = {r—=5ta{z—[r+1]{x— 5}}
= {z—5}&{z—6}
= {z 6}
[R=Mel](p.n) = (p@{R p]p)}]p)

[Mle) =ea;] (p,p) = (p,‘.u @ {[er] p > le2] o} ‘)

Example:

[t=2+1;]({z 5}, 1) = (p,n) where:

{z =5} @ {z— [z + 1] {z —{(}}

{z — 5} ;—B}'\.w‘ﬁ}

{r — 6}

p

Apath 7=kky... k, isacomputation for the state s if:
s € def ([kn] o...o[k])
The result of the computation is:

[[T‘F]I 5= (|[km]] 0...0 [[kl]]) 5

Application:

Assume that we have computed the value of = + at program point u:

X+y

@ ®

We perform a computation along path 7 and reach v where we evaluate
again xr + 1 ...

Idea:

If = and y have not been modified in 7, then evaluation of = + v at v must
return the same value as evaluation at . :-)

We can check this property at every edge inm :-}

More generally:

Assume that the values of the expressions A = {e, ..., ¢, } are available

at u.

Idea:

If 2z and 7 have not been modified in 7, then evaluation of = + y at v must

return the same value as evaluation at . :-)

We can check this property at every edge inm -}

Apath 7=Fkky...k, isacomputation for the state s if:
s def ([km]o...o[k])
The result of the computation is:

[7]s=([km]o...o[k])s

Application:

Assume that we have computed the value of = -+ y at program point w:

o e o™

We perform a computation along path 7 and reach v where we evaluate

again « + y ...

Idea:

If = and y have not been modified in 7, then evaluation of = + y at v must

return the same value as evaluation at v :-)

We can check this property at every edge inm -}

More generally:

Assume that the values of the expressions A = {¢y, ..., ¢, } are available

at u.

Every edge k transforms this setintoa set [k]* A of expressions
whose values are available after execution of & ...

... which transformations can be composed to the effect of a path
T=ky... k.

The effect [k]* ofanedge k= (u,lab,v) only depends on the
label lab, ie., [K]f = [lab]

... which transformations can be composed to the effect of a path

m=ky ... k.

... which transformations can be composed to the effect of a path
m=k ... k.

The effect [k]* ofanedge k& = (u,lab,v) onlydepends on the
label [ab, ie., [k]* = [lab]* where:

[Jf 4 _

[Pos(e)]* A = [Neg(e)]* A = AuU{e}
[t=e]fA = (AU{e})\Expr, where
(-l.
/J\ Expr, all }xpreﬂk}ns which contain =

x = %+

e
| /

[t = MlelFA = (AU{e})\Ezpr,

[[U’({; = e A :(iU{f |«f3}3\ L«ﬁL—)

= ()
_

I B

ﬁ[“a’(q: S

[t = Mle|]FA = (AU{e})\Ezpr,
[Mle)] =en]*A = AU{ere2}

By that, every path can be analyzed :-)
A given program may admit several paths :-(

For any given input, another path may be chosen :-((

—— We require the set:

Ay = ﬂ{[[fr]]:l;) | 72 start —* v}

42

[z = Mle];]* A
[Mley] = ex]F A

(AU {e\Ezpr,
AU {er, en}

By that, every path can be analyzed :-)
A given program may admit several paths :-(

For any given input, another path may be chosen :-((

41

Concretely:

— We consider all paths = which reach v.

— For every path 7, we determine the set of expressions which are
available along .

— Initially at program start, nothing is available :-)

— We compute the intersection =—= safe information

43

Concretely:
[o = M[FA = (AU{cH\Enpr,
[Mle] = ex]fA = AU{ey, 2} — We consider all paths = which reach v.
— For every path 7, we determine the set of expressions which are
available along .

By that, every path can be analyzed :-) — Initially at program start, nothing is available :-)

A given program may admit several paths :~(— We compute the intersection =—= safe information

For any given input, another path may be chosen :-((

How do we exploit this information 777
—— We require the set:

Alv] = ﬂ{[[ﬁ]]:l;‘] | m: start —* v}

2 44
We provide novel registers 7. as storage for the e: We provide novel registers 7. as storage for the ¢:

\/!_1'\‘ { H\l I/f_!\‘l H\‘

{ . | L

I.r €; q II e; I/r e; q I/I €;

o~) ())

Ny e p—— p.

If ! I/.f 1

(4"\) (;)
2 \,,/
Fay Pt
(u) (u)

Neg V‘\l:’\u:nﬁ:) # II-'.-’ o
P =~ P

) ® @)

Neg EV'V\-‘N:E\ (T.)
- —
[

(v) (v)
~ /

43 46

... analogously for R = M|e|; and Mle)| = eoy.

Transformation 1.2:

If ¢ is available at program point u, then ¢ need not be re-evaluated:

We replace the assignment with Nop :-)

...analogously for R = Me|; and Me) = e

Transformation 1.2:

If e is available at program point w, then ¢ need not be re-evaluated:
e € Alul
T. = e ﬁ :

We replace the assignment with Nop :-)

47

