Script generated by TTT

Helmut Seidl

Title: Seidl: Programmoptimierung (16.10.2013) Program Optimization

Date: Wed Oct 16 08:30:34 CEST 2013

Duration: 88:14 min

TU Miinchen
Winter 2013/14

Pages: 32

2 VST Grades: ¢ Bonus for homeworks
Organization
= e Wwritten exam

Dates:
Lecture: Monday, 14:00-15:30
Wednesday, 8:30-10:00
Tutorials:  Tuesday/Wednesday, 10:00-12:00
Stefan Schulze Friehlinghaus: schulzef@in. tum.de

Material:  slides, recording  :-)

Moodle
Program Analysis and Transformation
Springer, 2012




Proposed Content: Proposed Content:

1. Avoiding redundant computations . Avoiding redundant computations
—+ available expressions ;

—» available expressions

—  constant propagation/array-bound checks —  constant propagation/array-bound checks

—  code motion —  code motion

2. Replacing expensive with cheaper computations 2. Replacing expensive with cheaper computations

—  peep hole optimization —  peep hole optimization
—  inlining —  inlining
—  reduction of strength —  reduction of strength

4
3. Exploiting Hardware
—  Instruction selection
—  Register allocation 0 Introduction
—  Scheduling .
Observation 1;  Intuitive programs often are inefficient.
—  Memory management

Example:
void swap (int i, int 3j) {

int t;

if (alil > aljl) {
t = aljl;
aljl = alil;
alil = t;
}

}




Inefficiencies:

e Addresses a[i], a[j] are computed three times :-(

e Valuesal[i],al[j] are loaded twice :-(

void swap (int *p, int

int t, ai, aj;
ai = xp; aj = xqg;

if (ai > aj) {

*q) |

t = aj;
*q = ai,

Improvement: *p = t; // t can also be
} // eliminated!

e  Use a pointer to traverse the array a; }

e store the valuesof a [i],a[]]!

7 8
void swap (int *p, int =*q) {

0 Introduction

Observation 1;  Intuitive programs often are inefficient.

Example:
void swap (int i, int j) {
int t;
if (alil » aljl) {
t = aljl;
aljl = alil;
alil = t;

}

int t, ai, aj;
ai = xp; aj = *q;
if (ai > aj) |

t = aj;

*q = ai;

*p = t; /!
} //

t can also be

eliminated!




Observation 2:

Higher programming languages (even C :-) abstract from hardware and
efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples:

Filling of delay slots;
Utilization of special instructions;
Re-organization of memory accesses for better cache behavior;

Removal of (useless) overflow/range checks.

Observation 3:

Programm-Improvements need not always be correct  :-(

Example:

Idea:

y A £0 F £0; - y =|2 * [EQ);

Save second evaluation of £ ()

Observation 3:

Programm—[mpn yvements need not always be correct :-(

Example:
y =10 + £0); — y =2 % £();
Idea: Save the second evaluation of £ () 777
Problem: The second evaluation may return a result different from the

first; (e.g., because £ () reads from the input :-)

Consequences:

Optimizations have assumptions.

The assumption must be:

e formalized, Q’-’_
e checked @/—‘—’

It must be proven that the optimization is correct, i.e., preserves

the semantics !!!




Observation 4: Unavoidable Inefficiencies:

*  Array-bound checks;
Optimization techniques depend on the programming language: ) ) )
*  Dynamic method invocation;
*  Bombastic object organization ...
—  which inefficiencies occur; Analyzability:
—  how analyzable programs are; C .
/ +  no pointer arithmetic:
—  how difficult/impossible it is to prove correctness ... C .
-+ no pointer into the stack;

—  dynamic class loading;

EX"mll)lE" Java - 1‘eﬂection| exception .—Ithreads. .
Ac . JdVe

Correctness proofs: ... in this course:

+ more or less well-defined semantics;
—  features, features, features:

a simple imperative programming language with:
—  libraries with changing behavior ...

e variables // registers

o R=c¢ // assignments

o R=Mle]; // loads

o Mley] = es; // stores

e if () s, else s, // conditional branching
e goto L; // no loops  :-)




Note:

e For the beginning, we omit procedures -

e External procedures are taken into account through a statement f() for

... in this course:

ir imperative progr i 3 vith:
a simple imperative programming language with

an unknown procedure f. e variables i registers
—— intra-procedural o R=eg / assignments
—— kind of an intermediate language in which (almost) everything e R=Mie; // loads
can be translated. o Mley] = ey; /f stores
o if (e) 5, else sy // conditional branching
Example: swap () e goto L; // no loops  :-)
17 16
Note: 0- A Ap+1xi; / Ay == &a
l: R, MI[AY; / Ry == ali]
e For the beginning, we omit procedures - 2 Az Ao+ 1 7;
3: R, M[As]; / Ry == alj]
e External procedures are taken into account through a statement f() for )
an unknown procedure f. o (R > By) {
=—— intra-procedural o As Ao+ 173
—— kind of an intermediate language in which (almost) everything 6: ! M{As];
can be translated. 7 Ay Ao +1xj; L
8: As Ag + 1=
9: R M[As];
Example: swap () 10 - MA] — R
11 - Ae Ag 1 54
12 M4 = t;
i




Ao +é* i //

0: Ay Ay == &a 0: Ay Ao+ 1+ // Ay == &a
1: R, = MI[A; // Ry == a]i] l: Ry MI[A]; // Ry == ali]
2: Ay = A(}+a*j; 2 Az Ao+ 1= j;
3: R MIAs); // Ry == a[j] 3: Ry M[As); I Ry == a[j]
L: if (R, > Ry){ | if (R > Rs){
5: As = Ay +1xg7; 5: As = Ap+1x*y;
6 t = MJ[A;]; 6 t = MJ[A;];
7 A, — A+ i 7 Ay Ag+ 1% j;
8: As = Ay +4 *i; 8: As = Ayg+1xi;
9: Rs = M][A;]; 9: Ry MI[As];
10 M[A] = Rs; 10 : M[A) = Rz
11 : Ag = A +?*z’: 11 : Ag Ag + 1% 14;
12 : M[Ag] = & 12 : M[Ag] = ¢
} t
18 18
Optimization 1: 1*R — R Optimization 1: 1R — R

Optimization 2:

Reuse of subexpressions

/‘1] —_—= ;';15 —_—= ‘46
442 —_—= ;';13 —_—= ;4]

J.[[!'l]] == ;L!r[:lj]
.’U[Az] == ;L!r[:lj]

Ry == Rs

Optimization 2:

Reuse of subexpressions




Ay
R
Ay

R,

if (R, > Ry) {

Ag+1=*1; / Ay == &a
MI[A; // Ry == ali]
Ao+ 1% j4;
M[As]; // Ry == alj]
As = Ay +1xg7;
t = MJ[A;];
Ay = Ay +1=7;
As = Ay +1=%i;
R = MJ[As];
M[A] = Rs;
Ag = Ap+1xi;
M[Ag] = &
}
18

By this, we obtain:

41 = “10 +Z
R, = M[A]
4@ = 4‘10 +_]

Optimization 3:

Gain:

Contraction of chains of assignments

before | after
+ 6 2
* 6 0
load 4 2
store 2 2
> 1 1
= 6 2
21

=)

1 Removing superfluous computations

1.1 Repeated computations
Idea:
If the same value is computed repeatedly, then

—  slore it after the first computation;

—  replace every further computation through a look-up!

—— Availability of expressions

—— Memoization




1 Removing superfluous computations

1.1 Repeated computations
Idea:

If the same value is computed repeatedly, then
—  store it after the first computation;

—  replace every further computation through a look-up!

== Availability of expressions

—— Memoization




