Script generated by TTT

Title: Seidl: Programmoptimierung (21.01.2013)

Date: Mon Jan 21 14:03:33 CET 2013
Duration: 89:07 min

Pages: 45

(1)

4.1 A Simple Functional Language
For simplicity, we consider:
e == b|(e..., er) |cer .. e | funz — e

[(e1e2) | (Or€) | (e10ze2) |

let 2 = e ineq |

match ey with py — e | ... | pr — e
p = bla|ecxy. x| (2. .,)
t = letrecz;=¢,and... and z; = ¢ in e

where b isaconstant, x isavariable, ¢ isa (data-)constructor

and 0); are i-ary operators.

-
o
&

4.1 A Simple Functional Language
For simplicity, we consider:
e = bl(e,..., er)|cer ... e | funz —e

[(erez) | (Ope) | (erOzes) |

let zy = ey ineg |

match eg withp; — e |...| pp = e
p = bla|exy.omy | (2. 2)
t = letrecry=¢e and... andz, —¢, ine

where b isaconstant, x isavariable, ¢ isa (data-)constructor
and [O; are{-ary operators.

4.1 A Simple Functional Language
For simplicity, we consider:
e == bl(ey,....ex)|cer ... ep | funz — e

[(erez) | (O1€)]| (e10ze) |

let 1 = e inep |

match eg with py — e | ... | pp — e
p = blx|cxy... x| (..., 2%)
t = letreczy=e and... andz, =¢; ine

where b isaconstant, x isavariable, ¢ isa (data-)constructor
and [O; are ¢-ary operators.

... in the Example:
A definition of max may look as follows:

let max = fun * — match z with (x,z3) — (
match z; < x5
with True — x4

\ False = a4

Accordingly, we have for abs:

let abs = funz — let z = (z, —x)

4.2 A Simple Value Analysis
Idea:

For every subexpression ¢ we collect the set [¢]* of possible
values of e ...

788

Let V' denote the set of occurring (classes of) constants, functions as

well as applications of constructors and operators. As our lattice, we
choose:

v =2"

As usual, we put up a constraint system:

o If e isavalue ie., of the form: b, ce ... e (e1,...,), an
operator application or funz — e we generate the
constraint:

[e] 2 {e}
e If e=(e1ey) and f=funz — € then
2 (felal)?eF -0
bl 2 (elal)?lel 0

Let V' denote the set of occurring (classes of) constants, functions as

well as applications of constructors and operators. As our lattice, we
choose:

V=2
As usual, we put up a constraint system:

e If e isavalue ie., of the form: b,ce; ..., (e

operator application or funz — e we generate the
constraint:

[e]* 2 {e}
e If e=(e Q and f=fun £~ e, then

789

Analogously for ¢ =letrec zy = ¢ ... 2, = ¢, in eg:

int-values returned by operators are described by the unevaluated
expression;

Operator applications might return Boolean values or other basic
values. Therefore, we do replace tests for basic values by
non-deterministic choice ...

Assume e = matcl eqgywit — e | ... pe = oer.
Then we generate for p; = b (basic value),

[]f 2 [e.]' &

791

If pp=cy...yr and v=ce|...e, isavalue, then

[F 2 (velal)?[e] 0
[wlF 2 (velel)? [- 0
If pi=(y,.--,) and v =(e},...,e)) isavalue, then

[l 2 (velel)?[el’ : 0
¥

If p;=y.then

If pp=cy...yr and v=cel...e isavalue, then

[FF 2 (velo))?[e] - 0
[} 2 (velel)?[e]F - 0
If pi=(wn,...,) and wv=(e],...,e,) isavalue, then

If p;=y.then

792

Example The append-Function

Consider the concatenation of two lists. In Ocaml, we would write:

let rec app = funx — match x with
[— funy — y
[Rt — funy — h:oappty
inapp [1;2] [3]

The analysis then results in:

[app]* = {funz — match...}

[T = {[1:2.[2. (]}

[match...]* = {funy — y.funy — h:app...}
[yl = {Bl}

793

[[h = {L1,2}

[£]* = {20}

[app]* =

[app [1: 2] = {funy — y,funy — h:app...}

[app £ y)* =

[app [L;2] B])F = {[3],h:app...}
Values cey...ep (eq,...,e;) oroperator applications e;0e;
now are interpreted as recursive calls ¢ [eg]*. .. [ex]", ([ed%, . . ., [ex]?)

or [e;]*O]ea]?, respectively.

|

regular tree grammar

794

Lej% ¢ e, ~--Q}_

T Zﬁl?c & e 3 Oc, by

I -
[tF = {2.0}
[app]* =
lJapp[1;2]] = {funy — y,funy — h:
[appty]* = (f t:) c C:) ;)
[app[1;2] [B]F = {13]h::app...})~
Values ceq...ep, (eq,...,) or operator applications e, 0e,
now are interpreted as recursive calls ¢ [e]* ... [er]® ([ed]?, - -, [ex]?)

or [ei]fOfe]F, respectively.
—— regular tree grammar

794

.. in the Example:
We obtain for A = [appty]*:

A = 3] | [hF:A
[R]f — 1 | 2

Let £(e) denote the set of terms derivable from [e]* w.r.t. the regular tree
grammar. Thus, e.g.,

L(h) = {1,2}
Liappty) = {las;...

yap; 3] | = 0,a; € {1,2}}

Example The append-Function

Consider the concatenation of two lists. In Ocaml, we would write:

let rec app = funx — match x with
[— funy — y
[t — funy — hoappty
inapp [1;2] [3]

The analysis then results in:

[app]* = {funz — match...}

[T = {[1:2.[2. (]}

[match...]* = {funy — y.funy — h:app...}
[yl = {Bl}

... in the Example:

We obtain for A = [appty]* :

Let L(¢) denote the set of terms derivable from [e]* w.r.t. the regular tree
grammar. Thus, e.g.,

L(h) {1,2}
Lappty) = {la1;...,a;3] |7 >0,0; € {1,2}}

4.3 An Operational Semantics

Idea:
We construct a Big-Step operational semantics which evaluates
expressions w.r.t. an environment :-)
Values are of the form:
viu=b|ev ..o | (vg,.. ., v) | (funz — e,n)
Examples for Values:
cl
2] ==1(=2()
(funz — z:y, {y — [3]})

Expressions are evaluated w.r.t. an environment 7 : Vars — Values.

The Big-Step operational semantics provides rules to infer the value to
which an expression is evaluated w.r.t. a given environment, i.e., deals
with statements of the form:

(e,n) = v
Values:
(b,n) = b
(funz — e,7) — (funz — e.n)
(e1,m)=v1 ... (e, 1) = vk
(cep...epn) = cvy...u

Operator applications are treated analogously!

797

Expressions are evaluated w.r.t. an environment 7 : Vars — Values.

The Big-Step operational semantics provides rules to infer the value to
which an expression is evaluated w.r.t. a given environment, i.e., deals
with statements of the form:

(e,n) = v C
= §
Values: (e 4 ?‘)”f‘) J7 G’L/z) 2 Q;T"
(byn) =10
(funz — e,n) = (funz — e,7) (—
(Q‘/\“’ 27)"Z> "“7 >
(er,n)=—=1v; ... (eg.n) = vy
(cep...epn) = cvy...u

Operator applications are treated analogously!

Function Applj

(e1,m) = (funz — e, n)

(e, & {x — 12}) = v3

(€1 €2,7) = v3

Global Definition:

letrec ... z2=¢e ... in ...
(e,0) =1
(z,1m) =

798 799

Case Distinction 1:

(e,n) = b
(ei, 1)

(match e withp, — e | ... |pr — e,n) = v

if p;=0b isthe first pattern which matches b :-)

800

Case Distinction 2:

(e,n) = cvr... 0
(e, n@&{z1—= v, ...,z —= u})
(match e withp, — e | ... |pr — ep,n) = v

if pi=cz ...z isthe first pattern which matches cvy...v)

801

Case Distinction 4:

(mh*rh ewithp, = e | ... | pe = e, n) —

if p; = isthe first pattern which matches o :-)

803

Local Definitions:

(e1,m) = 1
(o, & {zy — 11}) =

(let zy = e in eg,) =

Variables:

(z,1) = nlx)

804

Correctness of the Analysis:

For every (e,n) occurring in a proof for the program, it should hold:
e If n(z)=wv.then [v] AL(x).
e If (e,y) == v, then [v] A L(e)..

e where [v] is the stripped expression corresponding to v, i.e.,
obtained by removing all environments, and

o vALIiffve LorL hasan expression v’ which evaluates to v.

Conclusion:

L(e) returns a superset of the values to which e is evaluated :-)

805

44 Application: Inlining

Problem:

e global variables. The program:

let z=1
inlet f= let =2
in funy — y+=x

in [z

B0G

4.4 Application: Inlining

Problem:

¢ global variables. The pr

806

... computes something else than:
let =1
inlet f= let =2

in funy — y+x

in let y==

in y+zx

e recursive functions. In the definition:
foo = funy — fooy

foo should better not be substituted :-)

807

... computes something else than:

let z=1 44 Application: Inlining
inlet f= let =2
in funy Problem:
in let y==x
in y+az & e global variables. The program:

o . let z=1
recursive functions. In the definition:
inlet f= let =2
foo = funy — fooy in funy — y+a

foo should better not be substituted :-) in fz

807 B0G

... computes something else than:

let z=1
Idea I:

inlet f= let =2
in funy = y+=x

— First, we introduce unique variable names.
in let y==2
) — Then, we only substitute functions which are staticly within the
moyta scope of the same global variables as the application — :-)

recursive functions. In the definition: — For every expression, we determine all function definitions with

this property :-)
foo = |[fun y —|fooly

foo should better not be substituted :-)

807 808

let z=1 — For every expression, we determine all function definitions with

in let (?: let =2

g\}\fun y =yt
. (&
in Tz

1

806

this property :-)

808

1.4 Application: Inlining
Idea 1:
Problem: . ‘ ‘ ‘
— First, we introduce unique variable names.
L o R — Then, we only substitute functions which are staticly within the
e global variables. The program: ") L
scope of the same global variables as the application :-)

let z=1 — For every expression, we determine all function definitions with

inlet f= let =2 this property :-)
in funy = y+=x

in fzx

806 808

4.4 Application: Inlining
Idea I:
Problem: , ‘ ‘ ‘
— First, we introduce unique variable names.
i o o — Then, we only substitute functions which are staticly within the
¢ global variables. The program: :) .
scope of the same global variables as the application :-)

Let = D[e] denote the set of definitions which staticly arrive at

Idea 1: ee If ¢ = letx; =e;iney then:
o] =

First, we introduce unique variable names lea] = U {a)
— Then, we only substitute functions which are staticly within the

scope of the same global variables as the application :-) oo If ¢ = funz — ¢ them:
— For every expression, we determine all function definitions with [e1] = DU{x}

this property :-)

ee Similarly, for ¢ = matcleb. CTY .. T~
[rj]: U{Il.....i‘k}
p -—
De) = D
808 809
In all other cases, is propagated to the sub-expressions unchanged
)
let z=1
. inlet z; =2
... in the Example: o
inlet f= let z =2
lot =1 in funy — y+ o
inlet f= let = =2 n fe
e e e —

in funy — y+ 1,

———

in fx
—— the inner definition becomes redundant !!!

... the application f x is not in the scope of z,
—_—

—— we first duplicate the definition of 2, :

810 811

let =1 let z=1

inlet #, =2 inlet 2, =2

inlet f=funy — y+ux inlet f=funy — y+

in fzx in let y==x

in y+

—— now we can apply inlining :

Removing variable-variable-assignments, we arrive at:

812

