Script generated by TTT We obtain:

for (i =0;i < Nji++) {
for (j =04 < M:j++) cli][4] = 0;

Title: Seidl: Programmoptimierung (16.01.2013) for (k=0:k < K kt+)
for (j=0;j < M;j++)
Date: Wed Jan 16 08:30:35 CET 2013 cli]ld] = elillj] + ald][k] - bK][);
}

Duration: 88:52 min

Discussion:

PageS: 37 e Instead of fusing several loops, we now have distributed the loops
=)

e Accordingly, conditionals may be moved out of the loop ——
if-distribution ...

761

for (i=0;i< N;i++) {
for (j=0:7 < M;j++) c[i][7]]=0;
for (=075 < M;j++)
for (k=0;k < K;k++)
cli][j] = elillj] + ali][k] - blK][5];

for (i =0;i < N;i++)
for (7=0;7 < M;j++) {
cli][j] = 0;
for (k=0:k < K;k++)

}
clills] = clalli] + ald][k] - bIF][5];
J Correctness:
¢ Now, the two iterations can no longer be exchanged :-(——= The read entries (here: no) may not be modified in the
ini / 1"
e The iteration over j, however, can be duplicated ... remaining body of the loop !!!

—— The ordering of the write accesses to a memory cell may not be
changed :-)

759 760

Warning:

Instead of using this transformation, the inner loop could also be
optimized as follows:

for (1 =0;7 < N;i++)
for (j=0;j<M:j++) {
t=0;
for (k=0:k < K;k++)
t =t + a[i][k] - BIK][5];

[dea:

If we find heavily used array elements — a[e;] . .. [e,] whose index
expressions stay constant within the inner loop, we could instead also
provide auxiliary registers :-)

Warning:

The latter optimization prohibits the former and vice versa ...

763

Idea:

If we find heavily used array elements a[ey] . . . [e,] whose index
expressions stay constant within the inner loop, we could instead also
provide auxiliary registers :-)

Warning:

The latter optimization prohibits the former and vice versa ...

Discussion:
e so far, the optimizations are concerned with iterations over arrays.
e Cache-aware organization of other data-structures is possible, but in

general not fully automatic ...

Example: Stacks

(1 {2 {3 }{4]

764

Advantage:

+ The implementation is simple :-)
+ The operations push / pop require constant time :-)

+ The data-structure may grow arbitrarily -

Disadvantage:

— The individual list objects may be arbitrarily dispersed over the
memory :-(

=
@
&

Alternative:

I'd ™

A
A S

Advantage:

The implementation is also simple :-)
The operations push / pop still require constant time :-)

The data are consequtively allocated; stack oscillations are typically
small

— better Cache behavior !!!

766

Disadvantage:

— The data-structure is bounded :-(

Improvement:

e If the array is full, replace it with another of double size !!!

e If the array drops empty to a quarter, halve the array again !!!

—— The extra amortized costs are constant :-)

—— The implementation is no longer so trivial :-}

Discussion:

The same idea also works for queues :-)
Other data-structures are attempted to organize blockwise.

Problem: how can accesses be organized such that they refer
mostly to the same block 777

— Algorithms for external data

768

2. Stack Allocation instead of Heap Allocation

Problem:

e Programming languages such as Java allocate all data-structures in
the heap — even if they are only used within the current method
-l

e Ifno reference to these data survives the call, we want to allocate
these on the stack :-)

— Escape Analysis

[dea:

Determine points-to information.

Determine if a created object is possibly reachable from the out side ...

Example: Our Pointer Language
z = new();
y = new();
z[A] =y;
z=1y;
ret = z;

... could be a possible method body :-

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such as ret: or

e are reachable from global variables.

... in the Example:

x = new();
y = new();

z[A] = v;

183

ret =[z7;

-
=)

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such as ret; or

e are reachable from global variables.

... in the Example:

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such as ret: or

e are reachable from global variables.

. in the Example:

We conclude:

e The objects which have been allocated by the first new() may
never escape.

e They can be allocated on the stack :-)

Warning:

This is only meaningful if only few such objects are allocated during a
method call :-(

Ifalocal new() occurs within a loop, we still may allocate the objects
in the heap :-)

=
=S
&

Extension: Procedures

e We require an interprocedural points-to analysis :-)

e We know the whole program, we can, e.g., merge the control-flow
graphs of all procedures into one and compute the points-to
information for this.

e Warning: If we always use the same global variables vy, v, . ..
for (the simulation of) parameter passing, the computed information
is necessarily imprecise - (

e If the whole program is not known, we must assume that each
reference which is known to a procedure escapes :-((

-
=)
=

3.4 Wrap-Up

We have considered various optimizations for improving hardware
utilization.

Arrangement of the Optimizations:

e First, global restructuring of procedures/functions and of loops for
better memory behavior :-)

e Then local restructuring for better utilization of the instruction set
and the processor parallelism :-)

e Then register allocation and finally,

e Peephole optimization for the final kick ...

Procedures:

Tail Recursion + Inlining

Stack Allocation

Loops:

[teration Reordering
— if-Distribution

— for-Distribution

Value Caching

Bodies:

Life-Range Splitting (SSA) |

Instruction Selection

Instruction Scheduling with
— Loop Unrolling

— Loop Fusion

Instructions:

Register Allocation <1

Peephole Optimization

778

4 Optimization of Functional Programs

Example:

let rec facx = if <1 then 1

clse

There are no basic blocks :-(
There are no loops - (

Virtually all functions are recursive :-((

779

5y

¢ X =

lefec G @ x =

L

Optimization of Functional Programs

Example:

letrec facz = if <1 then 1

e

There are no basic blocks :-(
There are no loops - (

Virtually all functions are recursive - ((

779

Strategies for Optimization:

—— Improve specific inefficiencies such as:

e Pattern matching
e Lazy evaluation (if supported :-)
e Indirections — Unboxing / Escape Analysis
o Intermediate data-structures — Deforestation
—— Detect and/or generate loops with basic blocks :-)
e Tail recursion
e Inlining
e let-Floating
Then apply general optimization techniques

... e.g., by translation into C ;-

780

Strategies for Optimization:

—— lmprove specific inefficiencies such as:

e Pattern matching

e Lazy evaluation (if supported :-)

e Indirections — Unboxing / Escape Analysis

e Intermediate data-structures — Deforestation
—— Detect and/or generate loops with basic blocks -

e Tail recursion

e Inlining

e let-Floating

Then apply general optimization techniques

... e.g., by translation into C ;-

T80

lefcc G @ x =
d X =1 e

ol |csvd (%) (%=1

\,\,\l-.)crfi/i%

leffec v @ x =
g X =1 e

olr |svd (277 (%=

\,\,\“L\)‘JL/]%

Strategies for Optimization:

—— Improve specific inefficiencies such as:

e Pattern matching

e Lazy evaluation (if supported :-)

¢ Indirections — Unboxing / Escape Analysis

e Intermediate data-structures — Deforestation
—— Detect and/or generate loops with basic blocks :-)

e Tail recursion

e Inlining

e let-Floating

Then apply general optimization techniques

... e.g., by translation into C ;)

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining

lct[-I.:-y) = if x>y then z

else y

let abs =z = (3‘ —z)

As result of the optimization we expect ...

781

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining
let max (z,y) =| if z >y then =z
else y
let abs z = | max (z, —z)

As result of the optimization we expect ...

Example:

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

let max (ry)

let abs z = max

As result of the optimization we expect ..

781

let max (z,y) = if x>y then =
else y
let abs z = let ===z
inlet y=-—=
in it x>y then z
else y

Discussion:

For the beginning, max is just a name. We must find out which value it
takes at run-time

—— Value Analysis required !!

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining
let| max (z,y) = if x>y then z
clse y
let abs z = |max|z, —z)

As result of the optimization we expect ...

782 781
let max (z,y) = if 2>y then =
else y
let abs =z = let z=z=z
inlet y=-—=2
in if >y then =
else y

Discussion:

For the beginning, max is just a name. We must find out which value it
takes at run-time

—— Value Analysis required !!

T8Z

Nevin Heintze in the Australian team
of the Prolog-Programming-Contest, 1998

T83

The complete picture:
4.1 A Simple Functional Language

@ %) For simplicity, we consider:
e = bl(e,....ex)|cer ... e | funz —e

[(e1e2) [(O e) | (e1Ozer) |

let zy = ey ineg |

match eg withp; — e |...| pp = e
p = bla|exy.omy | (2. 2)
t = letrecr,=e and.. . andz, =€, ine

where b isaconstant, x isavariable, ¢ isa (data-)constructor
and [O; are{-ary operators.

784 785

