Script generated by TTT

Title: Seidl: Programmoptimierung (12.12.2012)

Date: Wed Dec 12 08:34:00 CET 2012

Duration: 86:36 min

Pages: 43

Observation:

Sharir/Pnueli, Cousot

— Often, procedures are only called for few distinct abstract

argu ments.

— Each procedure need only to be analyzed for these :-)

— Putup a constraint system:

=
=
=8
=
1L

a

v ety
Coml)ine. [f,e

=
=
&
=
1L

.:.:
= =
-
RSB
= =
I

// [v,a]l* == value for the argument

569

lab]* [u,a]* k= (u,lab,v) edge
o
[[sto]_)f.u]]ﬂ stop, end pointof [

Discussion:

At least copy-constants can be determined interprocedurally.
For that, we had to ignore conditions and complex assignments - (
In the second phase, however, we could have been more precise)

The extra abstractions were necessary for two reasons:

(1) The set of occurring transformers C IEI must be

finite;

(2) The functions

)

M € M must be efficiently implementable

e The second condition can, sometimes, be abandoned ...

568

Discussion:

e This constraint system may be huge :-(

W —_
J &
Z u-f 2 J./]

e We do not want to solve it completely!!!

e Itissufficient to compute the correct values for all calls which

occur, i.e., which are necessary to determine the value

[main(), ag]*
=)

We apply our local fixpoint algorithm

e The fixpoint algo provides us also with the set of actual parameters

a € D for which procedures are (possibly) called and all abstract
values at their program points for each of these calls :-)

... in the Example:

Let us try a full constant propagation ...

main() \IJ T‘r work (

main()

-+ 4 e e o o A4 A A AfA

e T e B B N B I

o ©o o o

o o o

4 A

o o o

Discussion:

Lade |y Gl

In the Example, the analysis terminates quickly :-)

If T has finite height, the analysis terminates if each procedure
is only analyzed for finitely many arguments :-})

Analogous analysis algorithms have proved very effective for the
analysis of Prolog :-)

Together with a points-to analysis and propagation of negative
constant information, this algorithm is the heart of a very successful
race analyzer for C with Posix threads :-)

Discussion:

In the Example, the analysis terminates quickly :-)

If D has finite height, the analysis terminates if each procedure
is only analyzed for finitely many arguments :-))

Analogous analysis algorithms have proved very effective for the
analysis of Prolog :-)

Together with a points-to analysis and propagation of negative
constant information, this algorithm is the heart of a very successful
race analyzer for C with Posix threads :-)

... in the Example:

(2) The Call-String Approach: main() work() N enter
Neglay) / N Pos (a1)
[dea: | [
Neg (¢) P

— Compute the set of all reachable call stacks!

— In general, this is infinite :-(

— Only treat stacks up to a fixed depth d precisely! From longer
stacks, we only keep the upper prefix of length d :-)

— Important special case: d = 0.

— Just track the current stack frame ...

575
... in the Example: b
The conditions for 5,7,10 . e.g., are:
main() __ work() N enter
Neg (a1) \‘\\P“S (@1) R[5] 3 combine® (R[4], R[10])
B
N4 R[7] T enter* (R[4])
\ ¥ - 7
€ (9 R[7] 2 enter (R[8])
N //,U-l 71=3; ret = ay;
‘3‘* o | X R[9] T combine* (R[8], R[10])
¢ ay =t enter combine
® :
¥~ combine Warning:
(5)
T ret— 1 ret: The resulting super-graph contains obviously impossible paths ...
y '

... in the Example:

_ The conditions for 5,7, 10, e.g., are:
main() \'_0\ work ()
¢ t=0 Neg (a1) / R[5] 3 combine* (R[4],R[10])
)
Neg (t ‘x\po\ £) R[7] T enterf (R[4])
2 R[7] 3 enterf (R[8])
\ \, M17] = 3;
(3) R[O] I combine® (R[8], R[10])
¢ @ — & enter combine
@® ‘
¥ combine Warning:
®)
|! ret — 1 — ret: The resulting super-graph contains obviously impossible paths ...
575 576
... in the Example:
The conditions for 5,7,10 . e.g., are:
main() __ work () enter
=0 Neg(a1) / ™\ P‘_*S" ' R[5] 3 combine® (R[4], R[10])
o B —
Neg (t) / \Pm R[7] T enter* (R[4])
. 2 Or =" R[7] 2 enter (R[8])
\'x.‘ ! M17] = 3; L et =
(3} R[9] T combine* (R[8], R[10])
*‘" o = i enter combine
@ :
¥~ dombine Warning:
;! ot — 1 _ ret: The resulting super-graph contains obviously impossible paths ...
575

... in the Example this is:

... in the Example this is:

main() main() work () enter
Neg (aq) Pos (a1)
(V8
Neg (t)' / Neg (t) / . o
A
9)
ret=a
(¥
N i ‘
/ Bnter combine enter combine
578 577
... in the Example this is:
Note:
main() work ()X enter
— In the example, we find the same results: Ne \
Neg (aq) / \\ Pos (1)
more paths render the results less precise. / \"8"‘
.)
In particular, we provide for each procedure the result just for one Neg (¢ \ P
(possibly very boring) argument :-(. \/éf
— The analysis terminates — whenever 1D has no infinite strictly \,,"'] y ret=oan
ascending chains - (3) (10
8) * L _ . Shter =" combine
— The correctness is easily shown w.r.t. the operational semantics AL -
. ’ I 4 .
with call stacks. 7 .
Y combine
— For the correctness of the functional approach, the semantics with (5)
N
computation forests is better suited :-) ‘.‘l ret — 1 — ret:
,7'6§\
W2
579 578

3 Exploiting Hardware Features

Question: How can we optimally use:

Registers
Pipelines

Caches

loer

580

3.1 Registers

Example:
..

read(); (0)

x = M[A]; {EM

y=x+1; LL-:."‘-‘:.\:

if () { @
z=xI- # y=1x+
MA] =2 Neg (1) AN pos (3

) else { ¢ %
t=—y-y =y l l z =
M[A] =t 5) @

} M[A] = 38{ M[A] =

581

3.1 Registers
Example:

read();

r = MI[A];

$— 1+ 1;

if () {
=11
M[A] = z;

T else {

t=—y-
/P M[A] =&

¥

581

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers

Idea:
Use one register for several variables :-)

In the example, e.g., one for =, ¢, = ...

582

3.1 Registers

Example:

read();
CFMH:

if (4) { @

Si— &L - I}

MI[A] = = va/3mw
I oelse { // \

;
= T ia)
£

read();

R = M[A];

y=R+1;

if (y) {
R=R-R;
M[A] = R;

} oelse {
R=—y- -y
MIA] = R;

4) 6) 1] = R o
t=—y-y; t=—y-u; i L 2 } \"\ﬁ/‘
M[A] =D @) Q)
) O
581 584
\q L
Warning: de. 810
? ‘ = 7(1{4,z}
This is only possible if the live ranges do not averlap :-) 2 = M4 _ﬁ 6] {A, x}
[+ ~2 | 5| {41}
The (true) live range of = is defined by:
ie (true) live range o is defined by O\ 1144,)
\5 3 Axy
Llz] = {u|z e Lu]} { }
—2 | {A,z}
... in the Example: !
0]{A4}
58 587

In order to determine sets of compatible variables, we construct the
Interference Graph [= (Vars, E;) where:

Br = {{x,y} | = # y, Lla] N L[y) # 0}

E; hasanedge forz #y iff z,y arejointly live at some program
point :-)

... in the Example:

589

Interference Graph:

590

Variables which are not connected with an edge can be assigned to the
same register :-)

Color = Register

592

same register :-)

of:

Sviatoslav Sergeevich Lavrov,

Russian Academy of Sciences (1962)

592 593

Abstract Problem:

Given: Undirected Graph (V| E) .

Wanted: Minimal coloring, i.e., mapping ¢:V — N mit
(1) e(u)#e(v) for {u,v}eE;
(2) [WH{e(u) |we V) minimall

e In the example, 3 colors suffice :-) But
e In general, the minimal coloring is not unique :-(

e Itis NP-complete to determine whether there is a coloring with at
most Lk colors :-((

Gregory J. Chaitin, University of Maine (1981)
We must rely on heuristics or special cases :-)

594 595

Greedy Heuristics:

e Start somewhere with color 1;

e Next choose the smallest color which is different from the colors of
all already colored neighbors;

¢ Ifanode is colored, color all neighbors which not yet have colors;

e Deal with one component after the other ...

596

. more concretely:

forall (v e V) cfv] =0;

forall (v e V) color (v);

void color (v) {
if (c[v] #0) return;
neighbors = {u € V | {u, v} € E};
o] =Tk >0
forall (u € neighbors)
if (c(u)==0) color (u);

YVu € neighbors : k2 c(u)};

The new color can be easily determined once the neighbors are sorted
according to their colors :-)

597

Discussion:

— Essentially, this is a Pre-order DFS = :-)

— In theory, the result may arbitrarily far from the optimum

— ...in practice, it may not be as bad :-)

— ... Anecdote:

different variants have been patented !!!

598

Discussion:

— Essentially, this is a Pre-order DFS -

— In theory, the result may arbitrarily far from the optimum :-(
—» ...in practice, it may not be as bad :-)

— ... Anecdote: different variants have been patented !!!

The algorithm works the better the smaller life ranges are ...

[dea: Life Range Splitting

599

Special Case:

Basic Blocks

600

Special Case:

Basic Blocks

601

The live ranges of

T

and =z can be split:

L
r,1,
z,
X
1 L
T
r1, z1
L1, 21,1 o~
(21)
'!'I-:l-‘i A
J].(’
1,1

602

The live ranges of

I

and =z can be split:

==
N
=
I+
=R e

r =+
21 = M[Ay];
t = Mz

Ay =z, +1;
M[Ay] = zy;
y1 = Mlzy];
Mly] = t;

L
LY ®
@" o
[V]
1 &
I
Ly, 2 S

-

p
O @
"'J.:l:t . 7

“ -
ry, 1 . e

'@
Y1, t bt

603

