Script generated by TTT

Title: Seidl: Programmoptimierung (12.12.2012)

Date: Wed Dec 12 08:34:00 CET 2012

Duration: 86:36 min

Pages: 43

Observation:

Sharir/Pnueli, Cousot

- → Often, procedures are only called for few distinct abstract arguments.
- \rightarrow Each procedure need only to be analyzed for these :-)
- → Put up a constraint system:

Discussion:

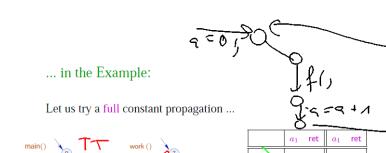
- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments :-(
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
 - The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

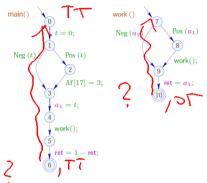
568

Discussion:

, le tupa,

- This constraint system may be huge :-(
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $[\![\mathsf{main}(), a_0]\!]^\sharp \longrightarrow \mathsf{We}$ apply our local fixpoint algorithm :-))
- The fixpoint algo provides us also with the set of actual parameters $a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls :-)





o					
	a_1	ret	a_1	ret	
0	Т	T,	Т	Т	
1	Т	Т	Т	Т	
2	Т	Т		L	
3	Т	Т	Т	Т	
4	Т	Т	0	Т	
7	0	Т	0	Т	
8	0	Т		L	
9	0	Т	0	Т	
10	0	Т	0	0	
5	Т	Т	0	0	
main()	Т	Т	0	1	

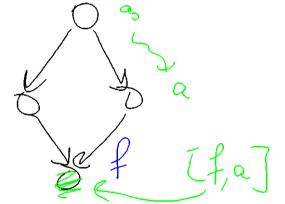
571

Clashi,	to wahi
---------	---------

Discussion:

- In the Example, the analysis terminates quickly :-)
- If \mathbb{D} has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)

572



Discussion:

- In the Example, the analysis terminates quickly :-)
- If □ has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)

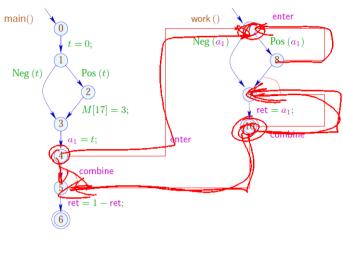
(2) The Call-String Approach:

Idea:

- → Compute the set of all reachable call stacks!
- \rightarrow In general, this is infinite :-(
- \to Only treat stacks up to a fixed depth -d -precisely! From longer stacks, we only keep the upper prefix of length -d :-)
- \rightarrow Important special case: d = 0.
 - → Just track the current stack frame ...

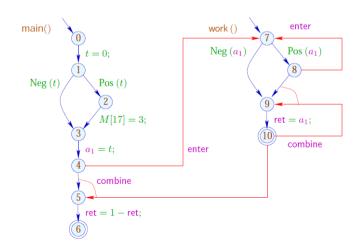
573

... in the Example:



575

... in the Example:



575

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \mathsf{combine}^{\sharp} \left(\mathcal{R}[4], \mathcal{R}[10] \right)$$

$$\mathcal{R}[7] \supseteq \mathsf{enter}^{\sharp}(\mathcal{R}[4])$$

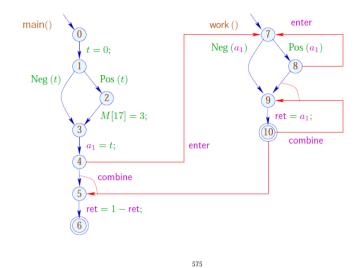
$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8])$$

$$\mathcal{R}[9] \ \supseteq \ \mathsf{combine}^{\sharp} \left(\mathcal{R}[8], \mathcal{R}[10] \right)$$

Warning:

The resulting super-graph contains obviously impossible paths ...

... in the Example:



The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[4])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8])$$

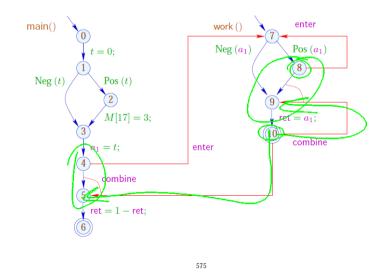
$$\mathcal{R}[9] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[8], \mathcal{R}[10])$$

Warning:

The resulting super-graph contains obviously impossible paths ...

576

... in the Example:



The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$$

$$\mathcal{R}[7] \supseteq \mathsf{enter}^{\sharp}(\mathcal{R}[4])$$

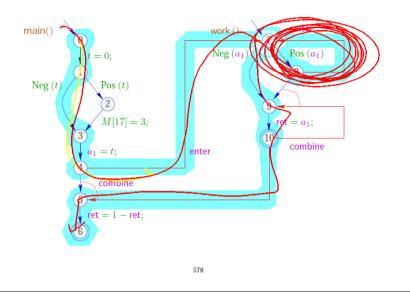
$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8])$$

$$\mathcal{R}[9] \ \supseteq \ \mathsf{combine}^{\sharp} \left(\mathcal{R}[8], \mathcal{R}[10] \right)$$

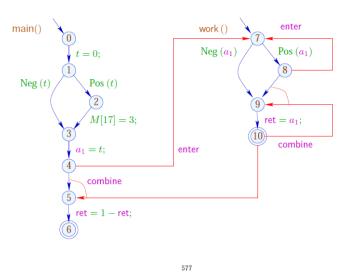
Warning:

The resulting super-graph contains obviously impossible paths ...

... in the Example this is:



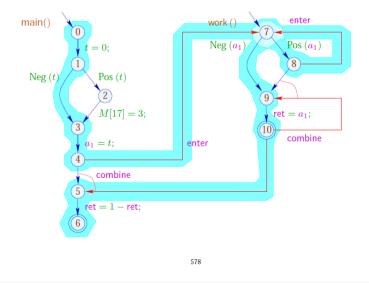
... in the Example this is:



Note:

- → In the example, we find the same results:
 more paths render the results less precise.
 In particular, we provide for each procedure the result just for one (possibly very boring) argument :-(
- ightharpoonup The analysis terminates whenever $\mathbb D$ has no infinite strictly ascending chains :-)
- ightarrow The correctness is easily shown w.r.t. the operational semantics with call stacks.
- → For the correctness of the functional approach, the semantics with computation forests is better suited :-)

... in the Example this is:



3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

... Pipelines

... Caches

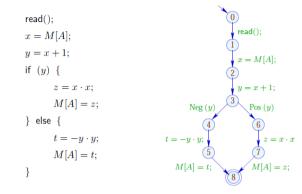
... Processors ??

GRS

580

3.1 Registers

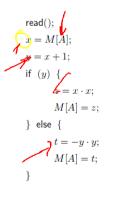
Example:

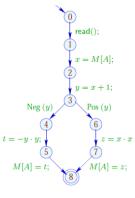


581

3.1 Registers

Example:





The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers :-(

Idea:

Use one register for several variables :-)

In the example, e.g., one for $x, t, z \dots$

582

3.1 Registers

Example:

$$\begin{array}{c} {\rm read}(); \\ \hline x = M[A]; \\ y = x + 1; \\ {\rm if} \ \ (y) \ \{ \\ \hline z = x \cdot x; \\ M[A] = z; \\ \} \ {\rm else} \ \{ \\ \hline t = -y \cdot y; \\ M[A] = t; \\ \end{array} \begin{array}{c} {\rm Neg} \ (y) \\ \hline M[A] = t; \\ \end{array} \begin{array}{c} {\rm Pos} \ (y) \\ \hline M[A] = z; \\ \end{array}$$

581

 $\begin{array}{l} {\rm read}(); \\ R=M[A]; \\ y=R+1; \\ {\rm if} \ \ (y) \ \{ \\ R=R\cdot R; \\ M[A]=R; \\ \} \ {\rm else} \ \{ \\ R=-y\cdot y; \\ M[A]=R; \\ \} \end{array} \begin{array}{l} {\rm Neg} \ (y) \\ {\rm Re} \ ($

584

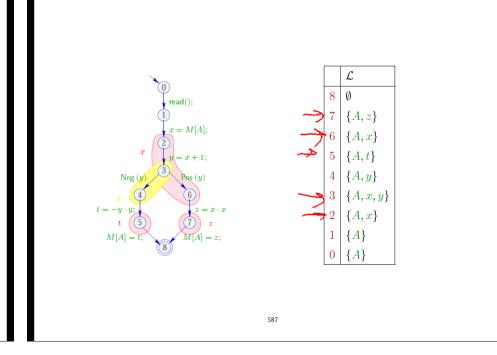
Warning:

This is only possible if the live ranges do not overlap :-)

The (true) live range of x is defined by:

$$\mathcal{L}[x] = \{ \mathbf{u} \mid x \in \mathcal{L}[\mathbf{u}] \}$$

... in the Example:



In order to determine sets of compatible variables, we construct the Interference Graph $I = (Vars, E_I)$ where:

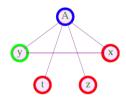
$$E_I = \{ \{x, y\} \mid x \neq y, \mathcal{L}[x] \cap \mathcal{L}[y] \neq \emptyset \}$$

 $E_I \quad \text{has an edge for } x \neq y \quad \text{ iff } \quad x,y \quad \text{are jointly live at some program point } \ :\text{-})$

... in the Example:

589

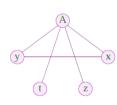
Variables which are not connected with an edge can be assigned to the same register :-)

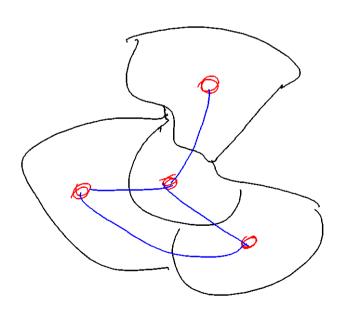


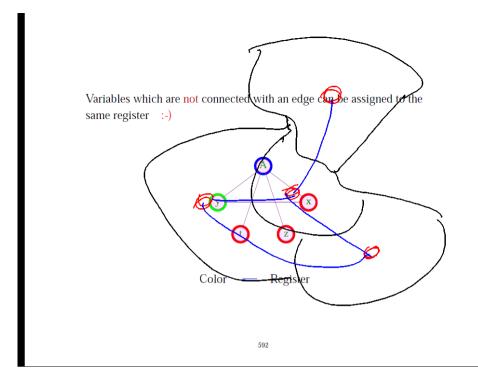
Color — Register

 $(a) \begin{picture}(20,0) \put(0,0){\line(1,0){10}} \put$

Interference Graph:







Sviatoslav Sergeevich Lavrov, Russian Academy of Sciences (1962)

593

Gregory J. Chaitin, University of Maine (1981)

Abstract Problem:

Given: Undirected Graph (V, E).

Wanted: Minimal coloring, i.e., mapping $c: V \to \mathbb{N}$ mit

- (1) $c(u) \neq c(v)$ for $\{u, v\} \in E$;
- (2) $\bigsqcup \{c(u) \mid u \in V\}$ minimal!
- $\bullet \quad \ \ \, \text{In the example, 3 colors suffice} \quad \text{:-)} \quad \, \text{But:} \\$
- In general, the minimal coloring is not unique :-(
- It is NP-complete to determine whether there is a coloring with at most k colors :-((

 \Longrightarrow

We must rely on heuristics or special cases :-)

595

Greedy Heuristics:

- Start somewhere with color 1:
- Next choose the smallest color which is different from the colors of all already colored neighbors;
- If a node is colored, color all neighbors which not yet have colors;
- Deal with one component after the other ...

596

Discussion:

- → Essentially, this is a Pre-order DFS :-)
- \rightarrow In theory, the result may arbitrarily far from the optimum :-(
- \rightarrow ... in practice, it may not be as bad :-)
- → ... Anecdote: different variants have been patented !!!

... more concretely:

The new color can be easily determined once the neighbors are sorted according to their colors :-)

597

Discussion:

- → Essentially, this is a Pre-order DFS :-)
- → In theory, the result may arbitrarily far from the optimum :-(
- → ... in practice, it may not be as bad :-)
- → ... Anecdote: different variants have been patented !!!

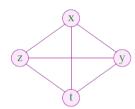
The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting

598

Special Case: Basic Blocks

	L
	x, y, z
$A_1 = x + y;$	x, z
$M[A_1] = z,$	\boldsymbol{x}
x = x + 1;	\boldsymbol{x}
$z = M[A_1];$	x, z
t = M[x];	x, z, t
$A_2 = x + t;$	x, z, t
$M[A_2] = z;$	x, t
y = M[x];	y, t
M[y] = t;	

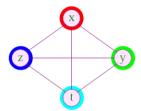


600

602

Special Case: Basic Blocks

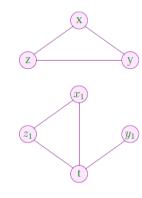
	\mathcal{L}
	x, y, z
$A_1 = x + y;$	x, z
$M[A_1] = z;$	\boldsymbol{x}
x = x + 1;	\boldsymbol{x}
$z = M[A_1];$	x, z
t = M[x];	x, z, t
$A_2 = x + t;$	x, z, t
$M[A_2] = z;$	x, t
y = M[x];	y, t
M[y] = t;	



601

The live ranges of x and z can be split:

	\mathcal{L}
	x, y, z
$A_1 = x + y;$	x, z
$M[A_1] = (z;)$	x
$(x_1) = x + 1;$	x_1
$z_1 = M[A_1];$	x_1, z_1
$t = M[x_1];$	x_1, z_1, t
$A_2 = \mathbf{x_1} + t;$	x_1, z_1, t
$M[A_2] = z_1;$	x_1, t
$y_1 = M[x_1];$	y_1, t
$M[\underline{y_1}] = t;$	



The live ranges of x and z can be split:

	L
	x, y, z
$A_1 = x + y;$	x, z
$M[A_1] = z;$	x
$x_1 = x + 1;$	x_1
$z_1 = M[A_1];$	x_1, z_1
$t = M[\mathbf{x_1}];$	x_1, z_1, t
$A_2 = \mathbf{x_1} + t;$	x_1, z_1, t
$M[A_2] = z_1;$	x_1, t
$y_1 = M[x_1];$	y_1, t
$M[y_1] = t;$	

