Script generated by TTT

Title:
Date:
Duration:

Pages:

Example:

Seidl: Programmoptimierung (05.12.2012)
Wed Dec 05 09:31:53 CET 2012
89:46 min

49

0:

1: if (¢;) goto 2;
4: halt

3: if(ey) goto 4;

goto 1;

Bad: The loop body is jumped into :-(

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly

arrangement of instructions :-)

Warning:

Not every linearization is equally efficient !!!

504
Example:
N\

O 0:
¢ l: if(le;) goto 4;
09 Sarem—

@ 3 if(les) goto 1;

| i _ 4 halt
Neg (

Y (@22l

R
(4= Pos (es)
e -

/ better cache behavior :-)

506

Idea: Example:
-
e Assign to each node a temperature! 0:
e always jumps to fqi 1: if (le;) goto 4:
(1) nodes which have already been handled; Neg (e1) / \\\i’i*ﬂ (€1) 2
(2) colder nodes. ;;' 3
e Temperalure = nesting-depth ' 2 v

For the computation, we use the pre-dominator tree and strongly

connected components
/ better cache behavior :-)

507 506

... in the Example:

Idea:

e Assign to each node a temperature!

e always jumps to

(1) nodes which have already been handled;

(2) colder nodes.

e Temperature = nesting-depth

For the computation, we use the pre-dominator tree and strongly
connected components ...

507 509

More Complicated Example:

More Complicated Example:

Our definition of Loop implies that (detected) loops are necessarily

nested :-)

[s is also meaningful for do-while-loops with breaks ...

513

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

[s is also meaningful for do-while-loops with breaks ...

513

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful for do-while-loops with breaks ...

514

Summary: The Approach

(1) For every node, determine a temperature;
(2) Pre-order-DFS over the CFG;
— If an edge leads to a node we already have generated code
for, then we insert a jump.

— If anode has two successors with different temperature,
then we insert a jump to the colder of the two.

— If both successors are equally warm, then it does not matter
-)

Summary: The Approach

(1) For every node, determine a temperature;
(2) Pre-order-DFS over the CFG;
— If an edge leads to a node we already have generated code
for, then we insert a jump.

— If a node has two successors with different temperature,
then we insert a jump to the colder of the two.

— If both successors are equally warm, then it does not matter
)

2.3 Procedures

We extend our mini-programming language by procedures without
parameters and procedure calls.

For that, we introduce a new statement:
f();
Every procedure f has a definition:

O A{ stmt* }

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main () .

516

... in the Example:

Example: /f (e/\) @ q)
KA

X
L
int a,ret; ()
int a,re FOA main() \ I
main () { int b; \‘0‘
a=23; if (a < 1) {ret = 1; goto exit; } ¢ a=3 Neg (a
£0; _] - e ‘-ii.41
1 fO); b=a
M17] = ret; (1; !
[17] ‘ i. @5 ! / @
ret = 0; f() ¢ ,U'lT:zret: a=b—1
} ret = b *ret ‘/3‘
exit : al l F0;
) .
ret = b

Such programs can be represented by a set of CFGs: one for each
procedure ...

517 518

... in the Example: o))
In order to optimize such programs, we require an extended operational

semantics ;-)

Program executions are no longer paths, but forests:

518 519

The function [] is extended to computation forests: w :
... in the Example:

[w] : (Vars — Z) x (N — Z) — (Vars — Z) x (N — Z)

Foracall k= (u,f();,v) we must

; J e determine the initial values for the locals:

enter p={x— 0|z € Locals} & (p|ciobais)

/
/
y

e ... combine the new values for the globals with the old values for the
l locals:

combine (PI-P'Z) - (pl‘Locnls) b (P2|C[oba[5)

J T ' e .. evaluate the computation forest inbetween:

B A [k (w)] (p, i) = let (py, 1) = [w] (enter p, p)
& —10—Q1 .
o N o in (combine (p, p1), 1)

[
=)
=3

{ Exu

=
)

520 521

The function [.] is extended to computation forests: w :
... in the Example:

[w] : (Vars — Z) x (N = Z) = (Vars — Z) x (N — Z)

Foracall k= (u,f();,v) wemust % [S D/J

© @ (24 e determine the initial values for locals:
w Eﬂ/ m — } enter p={x —=U| 2 € Locals } & (p|ciobas)
(5) (6) (7) (8) (9) (1) . .
— e e — e .. combine the new values for the globals with the old values for the
1 T l locals:
Y . FO- PN combine (py, p2) = Locals) B Sobals
5 : \G 5\7 /3 .8 /_: ‘.k9_/' l !/) (pl Pz) (l)l ‘ Local.) (Pz| G [oba[s)

j T e .. evaluate the computation forest inbetween:
(0 (] [k ()] (pop) = let (p1,m) = [w] (enter p, p)

in (combine (p, p1), t1)

520 521

The function [.] isextended to computation forests: w :
[w] : (Vars = Z) x (N = Z) — (Vars = Z) x (N — Z)

Foracall %= (u,f();,v) we must:

e determine the initial values for the locals:

enter p =4z — 0|z € Locals} & (p| cobas)

e ... combine the new values for the globals with the old values for the

locals:

combine (Pi-Pz) - (/—71 Locals) ©® (pz‘(’.‘lﬂbal.s)

e ... evaluate the computation forest inbetween:

Ik ()] (pyp) = let (p1,) = [w] (enter p,)
in (combine (p, p1), 1)

521

Warning:

e Ingeneral, [w] Iisonly partially defined :-)

e Dedicated global/local variables a;, b;, ret can be used to
simulate specific calling conventions.

e The standard operational semantics relies on configurations which
maintain a call stack.

e Computation forests are better suited for the construction of
analyses and correctness proofs :-)

e Itisan awkward (but useful) exercise to prove the equivalence of
the two approaches ...

522

Configurations:
configuration — stack x store
store = globals x (N — 7Z)
globals = (Globals — Z)
stack = frame - frame”
framye — point x locals
locals = (Locals = Z)

A frame specifies the local state of computation inside a procedure
call)

The leftmost frame corresponds to the current call.

523

Computation steps refer to the current call = :-)

The novel kinds of steps:

cal k= (u,f(),v) : *// //
((wp)] o)) — | (s, fg = 0 o € Locals}h) { (v, p) - 0, (3, 10))

/l\ uy entry pointof f

— (o, (v,)

rp return pointof f

524

The call stack explicitly implements the DES traversal through the
computation forest :-)

... in the Example:

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

The call stack explicitly implements the DFES traversal through the
computation forest :-)

... in the Example:

S
|;

526

The call stack explicitly implements the DFS traversal through the
computation forest :-)

. in the Example:

527

In order to optimize such programs, we require an extended operational

The call stack explicitly implements the DES traversal through the semantics)

computation forest :-)
Program executions are no longer paths, but forests:

... in the Example:

() e / \—-—
528 519
The call stack explicitly implements the DFES traversal through the The call stack explicitly implements the DFS traversal through the
computation forest :-) computation forest :-)
... in the Example: ... in the Example:

b0 b0
9| b—2 bi— 2
b3 9| b3
D D

530 530

The call stack explicitly implements the DES traversal through the
computation forest :-)

... in the Example:

532

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

536

This operational semantics is quite realistic)

Costs for a Procedure Call:

Before entering the body: ¢ Creating a stack frame;

o | assigning of the parameters:

¢ Saving the registers;

e Saving the return address;
e Jump to the body.

At procedure exit: o Freeing the stack frame.

¢ [Restoring the registers.

e Passing of the result.
e Return behind the call.

—— ... quite expensive !!!

537

1. Idea: Inlining

Copy the procedure body at every call site !!!

Example:
abs () { maz () {
g = —ay; if (ay < as) { ret =ay; goto _euil;
maz (); ret = ay;
} -

538

1. Idea: Inlining

.. yields: Copy the procedure body at every call site !!!
abs () { Example:
g = —ay;
if (ay <ay) { ret=ua,; goto 0}
ret = ay; abs () { maz () {
ay = —ay; if (ay <ay) { ret=ay; goto ;)
maz (); il ret = aq;
¥) ‘
539 538
.. yields:
Problems:
abs () e The copied block may modify the locals of the calling procedure
gy = —y; 77
if (ay < as) { ret =ay; goto ;) e More general: Multiple use of local variable names may lead (o
ret = aq; erTors.
e Multiple calls of a procedure may lead to code duplication :-((
} e How can we handle recursion 777

539 540

Call-Graph:
Detection of Recursion:
, e The nodes are the procedures.
We construct the call-graph of the program. I
e Anedge connexts g with A, whenever the body of g¢

contains a call of & .

In the Examples:

- Strategies for Inlining:

-

(D
) S
s Y \'\r—‘(r : :
(main) { _f) e Just copy nur leaf-procedures, i.e., procedures without further calls
=)
e Copy all non-recursive procedures!
LN N
\\aI)S)—-—ukmax/j
... here, we consider just leaf-procedures :-)
541 542

543 543

Note:

e The Nop-edge can be eliminated if the stop-node of [has no
out-going edges ...

e The =z, are the copies of the locals of the procedure f.

e According to our semantics of procedure calls, these must be
initialized with 0 :-)

544

2. Idea: Elimination of Tail Recursion

O { int b
if (a2 <1) { ret=ay; goto _exit; }
b=a-as
s = as — 1
a, =h

}

After the procedure call, nothing in the body remains to be done.

— We may directly jump to the beginning :-)

.. after having reset the locals to 0.

