Script generated by TTT

Title: Seidl: Programmoptimierung (26.11.2012)

Date: Mon Nov 26 15:11:58 CET 2012

Duration: 81:40 min

Pages: 39

... in the Simple Example:

$$\begin{cases} \{\{x\}, \{y\}, \{x[\,]\}, \{y[\,]\}\} \\ (0,1) & \{\{x\}, \{y\}, \{x[\,]\}, \{y[\,]\}\} \\ (1,2) & \{\{x\}, \{y\}, \{x[\,]\}, \{y[\,]\}\} \\ (2,3) & \{\{x\}, \boxed{\{y, x[\,]\}}, \{y[\,]\}\} \\ (3,4) & \{\{x\}, \{y, x[\,]\}, \{y[\,]\}\} \end{cases}$$

The analysis iterates over all edges once:

$$\begin{split} \pi &= \{\{x\}, \{x[\]\} \mid x \in \mathit{Vars}\}; \\ \text{forall} \quad & k = (_, lab, _) \quad \text{do} \quad \pi = \llbracket lab \rrbracket^\sharp \, \pi; \end{split}$$

where:

$$\begin{split} \llbracket x = y; \rrbracket^{\sharp} \pi &= \operatorname{union}^{*} (\pi, x, y) \\ \llbracket x = y[e]; \rrbracket^{\sharp} \pi &= \operatorname{union}^{*} (\pi, x, y[\]) \\ \llbracket y[e] = x; \rrbracket^{\sharp} \pi &= \operatorname{union}^{*} (\pi, x, y[\]) \\ \llbracket lab \rrbracket^{\sharp} \pi &= \pi \end{split}$$
 otherwise

387

... in the Simple Example:

... in the More Complex Example:

	$\{\{h\},\{r\},\{t\},\{h[]\},\{t[]\}\}$
(2,3)	$\{ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
(2,3) (3,4)	$\{ \overline{\{h,t,h[\],t[\]\}},\{r\}\}$
(4, 5)	$\{ [\{h,t,r,h[\],t[\]\}] \}$
(5,6)	$\{\{h, t, r, h[], t[]\}\}$

389

... in the More Complex Example:

$\{\{h\}, \{r\}, \{t\}, \{h[]\}, \{t[]\}\}$
$\{ \overline{\{h,t\}}, \overline{\{r\}, \overline{\{h[\],t[\]\}} \}}$
$\{\{h, t, r, h[\], t[\]\}\}$

389

Caveat:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we have:

$$\mathcal{O}(\# \ edges + \# \ Vars)$$
 calls of union* $\mathcal{O}(\# \ edges + \# \ Vars)$ calls of find $\mathcal{O}(\# \ Vars)$ calls of union

→ We require efficient Union-Find data-structure :-)

The analysis iterates over all edges once:

$$\pi = \{\{x\}, \{x[\]\} \mid x \in \mathit{Vars}\};$$
 forall $k = (_, lab, _)$ do $\pi = \llbracket lab \rrbracket^\sharp \pi;$

where:

387

Caveat:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we have:

$$\mathcal{O}(\# edges + \# Vars)$$
 calls of union*
 $\mathcal{O}(\# edges + \# Vars)$ calls of find
 $\mathcal{O}(\# Vars)$ calls of union

→ We require efficient Union-Find data-structure :-)

390

Idea:

Represent partition of $\ \ U$ as directed forest:

- For $u \in U$ a reference F[u] to the father is maintained;
- $\bullet \quad \text{Roots are elements} \quad u \quad \text{with} \quad F[u] = u \; .$

Single trees represent equivalence classes.

Their roots are their representatives ...

391

- \rightarrow find (π, u) follows the father references :-)
- \rightarrow union (π, u_1, u_2) re-directs the father reference of one u_i ...

392

The Costs:

union : $\mathcal{O}(1)$:- $\mathcal{O}(\frac{1}{2})$ find : $\mathcal{O}(\frac{1}{2})$:-

Strategy to Avoid Deep Trees:

- Put the smaller tree below the bigger!
- Use find to compress paths ...

395

0	1	2	3	4	5	6	7
5	1	3	1	1	7	1	1

396

Note:

- By this data-structure, n union- und m find operations require time $\mathcal{O}(n+m\cdot\alpha(n,n))$
 - // α the inverse Ackermann-function :-)
- For our application, we only must modify union such that roots are from *Vars* whenever possible.
- This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

Note:

- By this data-structure, n union- und m find operations require time $\mathcal{O}(n+m\cdot\alpha(n,n))$
 - // α the inverse Ackermann-function :-)
- For our application, we only must modify union such that roots are from Vars whenever possible.
- This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

404

Idea: Worklist Iteration

If an unknown x_i changes its value, we re-compute all unknowns which depend on x_i . Technically, we require:

 \rightarrow the lists $\underbrace{\textit{Dep } f_i}$ of unknowns which are accessed during evaluation of f_i . From that, we compute the lists:

$$I[x_i] = \{x_j \mid x_i \in Dep f_j\}$$

i.e., a list of all x_j which depend on the value of x_i ;

- \rightarrow the values $D[x_i]$ of the x_i where initially $D[x_i] = \bot$;
- ightarrow a list \ensuremath{W} of all unknowns whose value must be recomputed ...

Background 3: Fixpoint Algorithms

Consider: $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$

Observation:

RR-Iteration is inefficient:

- → We require a complete round in order to detect termination :-(
- → If in some round, the value of just one unknown is changed, then we still re-compute all :-(
- → The practical run-time depends on the ordering on the variables :-(

405

The Algorithm:


```
W = [x_1, \dots, x_n]; while (W \neq []) { x_i = \operatorname{extract} W; t = f_i \operatorname{eval}; t = D[x_i] \sqcup t; if (t \neq D[x_i]) { D[x_i] = t; W = \operatorname{append} I[x_i] W; } } where: \operatorname{eval} x_j = D[x_j]
```


$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

	I
x_1	$\{x_3\}$
x_2	Ø
x_3	$\{x_1, x_2\}$

408

Example:

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

	I	
x_1	$\{x_3\}$	
x_2	Ø	
x_3	$\{x_1, x_2\}$	

$D[x_1]$	$D[x_2]$	$D[x_3]$	W
Ø	Ø	Ø	x_1, x_2, x_3
{ <i>a</i> }	Ø	Ø	x_{2}, x_{3}
{ <i>a</i> }	Ø	Ø	x_3
{ <i>a</i> }	Ø	$\{a,c\}$	x_1, x_2
$\{a,c\}$	Ø	$\{a,c\}$	x_3, x_2
$\{a,c\}$	Ø	$\{a,c\}$	x_2
{ a , c }	{ a }	$\{a,c\}$	[]

409

Theorem

Let $x_i \supseteq f_i(x_1,\ldots,x_n)$, $i=1,\ldots,n$ denote a constraint system over the complete lattice $\mathbb D$ of hight h>0.

(1) The algorithm terminates after at most $h\cdot N$ evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (\underline{\textit{Dep } f_i})) \qquad // \text{ size of the system } :-)$$

(2) The algorithm returns a solution. If all f_i are monotonic, it returns the least one.

Example:

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

 $x_3 \supseteq x_1 \cup \{c\}$

$$egin{array}{c|cccc} x_1 & \{x_3\} \\ x_2 & \emptyset \\ x_3 & \{x_1, x_2\} \\ \end{array}$$

$D[x_1]$	$D[x_2]$	$D[x_3]$	W
Ø	Ø	Ø	x_1, x_2, x_3
{ a }	Ø	Ø	x_{2}, x_{3}
{ a }	Ø	Ø	x_3
{ a }	Ø	$\{a,c\}$	x_1, x_2
$\{a,c\}$	Ø	$\{a,c\}$	x_3, x_2
$\{a,c\}$	Ø	$\{a,c\}$	x_2
$\{a,c\}$	{ a }	$\{a,c\}$	[]

410

Theorem

Let $x_i \supseteq f_i(x_1,\ldots,x_n)$, $i=1,\ldots,n$ denote a constraint system over the complete lattice $\mathbb D$ of hight h>0.

(1) The algorithm terminates after at most $h\cdot N$ evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (\underline{\textit{Dep } f_i})) \qquad // \text{ size of the system } :-)$$

(2) The algorithm returns a solution.

If all f_i are monotonic, it returns the least one.

Example:

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

	I		
x_1	$\{x_3\}$		
x_2	Ø		
x_3	$\{x_1,x_2\}$		

$D[x_1]$	$D[x_2]$	$D[x_3]$	W
Ø	Ø	Ø	x_1, x_2, x_3
{ <i>a</i> }	Ø	Ø	x_{2}, x_{3}
{ <i>a</i> }	Ø	Ø	x_3
{ a }	Ø	$\{a,c\}$	x_1, x_2
$\{a,c\}$	Ø	$\{a,c\}$	x_3, x_2
$\{a,c\}$	Ø	$\{a,c\}$	x_2
$\{a,c\}$	{ a }	$\{a,c\}$	[]

409

Theorem

Let $x_i \supseteq f_i(x_1, \dots, x_n)$, $i = 1, \dots, n$ denote a constraint system over the complete lattice $\mathbb D$ of hight h > 0.

410

(1) The algorithm terminates after at most $h\cdot N$ evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (Dep f_i))$$
 // size of the system :-)

(2) The algorithm returns a solution. If all f_i are monotonic, it returns the least one.

Proof:

Ad (1):

Every unknown x_i may change its value at most h times :-) Each time, the list $I[x_i]$ is added to W.

Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_i))$$

$$= h \cdot N$$

Ad (2):

We only consider the assertion for monotonic f_i .

Let D_0 denote the least solution. We show:

• $D_0[x_i] \supseteq D[x_i]$

- (all the time)
- $D[x_i] \not\supseteq f_i \text{ eval} \implies x_i \in W$
- (at exit of the loop body)
- On termination, the algo returns a solution :-))

412

Example:

```
x_1 \supseteq \{a\} \cup x_3
x_2 \supseteq x_3 \cap \{a, b\}
x_3 \supseteq x_1 \cup \{c\}
```


The Algorithm:

```
W = [x_1, \dots, x_n]; while (W \neq [\,]) { x_i = \operatorname{extract} W; t = f_i \operatorname{eval}; t = D[x_i] \sqcup t; if (t \neq D[x_i]) { D[x_i] = t; W = \operatorname{append} I[x_i] W; } } \} where: \operatorname{eval} x_j = D[x_j]
```

407

Warning:

- The algorithm relies on explicit dependencies among the unknowns. So far in our applications, these were obvious. This need not always be the case :-(
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)

→ recursive evaluation ...

Idea:

ightarrow If during evaluation of f_i , an unknown x_j is accessed, x_j is first solved recursively. Then x_i is added to $I[x_j]$:-)

eval
$$x_i$$
 x_j = solve x_j ;
$$I[x_j] = I[x_j] \cup \{x_i\};$$

$$D[x_j];$$

→ In order to prevent recursion to descend infinitely, a set *Stable* of unknown is maintained for which solve just looks up their values :-)

Initially, $Stable = \emptyset$...

415

Warning:

- The algorithm relies on explicit dependencies among the unknowns.
 So far in our applications, these were obvious. This need not always be the case :-(
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)

==> recursive evaluation ...

h. r

Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration :-)
- The algo also works for non-monotonic f_i :-)
- For monotonic f_i , the algo can be simplified:

$$t = D[x_i] \sqcup t; \quad \Longrightarrow \quad ;$$

• In presence of widening, we replace:

$$t = D[x_i] \sqcup t; \implies t = D[x_i] \sqcup t;$$

• In presence of Narrowing, we replace:

$$t = D[x_i] \sqcup t; \implies t = D[x_i] \sqcap t;$$

413

Idea:

ightarrow If during evaluation of f_i , an unknown x_j is accessed, x_j is first solved recursively. Then x_i is added to $I[x_j]$:-)

eval
$$x_i$$
 x_j = solve x_j ;
$$I[x_j] = I[x_j] \cup \{x_i\};$$

$$D[x_j]$$

→ In order to prevent recursion to descend infinitely, a set Stable of unknown is maintained for which solve just looks up their values :-)

Initially, $Stable = \emptyset ...$


```
Example:
```

Consider our standard example:

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

A trace of the fixpoint algorithm then looks as follows:

