Script generated by TTT

The analysis iterates over all edges once:

m = {{z},{zl]} | = € Vars};

Title: Seidl: Programmoptimierung (26.11.2012) forall k= (_,lab,) do = [lab]im;
Date: Mon Nov 26 15:11:58 CET 2012 Wwhere:
Duration: 81:40 min [rt=yfr = union® (r,z,y)
[z =yleFx = union* (7, z,y[])
Pages: 39 [yle] = =]fm = union® (m,z,y[])
[lab]® = =7 otherwise
... in the Simple Example: ... in the Simple Example:
ko Yo
%\, = new(): b {wh {21} (vl 13} “‘%;j..=|1e\«vvx-: by {11 w1
* = nev 0,0 | =} {wh A=l 1} Al 13}) {;; = nev O, 1) | {{z} Ak =13 vl 13}
E‘) (1,2) | {{z}, k{201 L)1) i' . (1,2) | {{=} v} =111 w13}
@) (2,3) | {{ah[{y. =1} {wl1}} @) (2,3) | {{=.[{w, =[]}] {13}
il o (3,4) | {{zh Ay, =1} {ul1}} i‘ - (3.4 | b Ay =]}

388 388

Neg(t # Nu

... in the More Complex Example:

.. in the More Complex Example:

l.v:NuII:

u,./‘f-“'\p(_m;w {{h} 0} 4ty AR 41 {{h} O e LY 4113

V @.3) | {{h b LR AT 2.3) | {{h 3| b AL
@ G4 | LD 34 | {{{h.tAlL] {3
o= @5 | {{h e, B0 AT 4,5 A{h e B0 AN
;i;ﬂ::l[::': (5,6) {{h,t,r, R[], t[]1}} (5,6) {{h,t,r, h[],t[1}}

389

Caveat:
In order to find something, we must assume that variables / addresses
always receive a value before they are accessed.

forall
Complexity: where:
we have:
O(# edges + 4 Vars) callsof union® [z =y
O(# edges + # Vars) callsof find [z = yle|;Jtn
O(# Vars) calls of union [yle] = “]]liﬂr
[lab]*

We require efficient Union-Find data-structure -

390

The analysis iterates over all edges once:

* = {{eh (]} | 7 € Vars);
k= (_lab,_)

do 7= [[}Ff;f]]ﬁ?l—;

T, 1)
Lz, y[])

union® (7, z,y[])

—_—
union™ (m

_—
union™ (w

T otherwise

387

Caveat:
In order to find something, we must assume that variables / addresses Idea:
.
always receive a value before they are accessed.
Represent partition of U/ as directed forest:

Complexity: 7

e For well areference Flu] tothe father is maintained;
we have: ’

Roots are elements with Flu] =u.
O(# edges + # Vars) calls of union” * : ! [=
O(# edges + # Vars) callsof find

Single trees represent equivalence classes.
O(# Vars) calls of union

Their roots are their representatives ...

—— We require efficient Union-Find data-structure :-)

390 391
0 @ 7 ji@ @

s ./\‘ f — 4 pra
@ @ 5 (1 WEe=—=7)
2) 6 _Q/-" 3) \?)

f i

(2) 6)

(0/1]2[3[4]5]6]7]

frfs]ifaf7]s]7]

oA LIS ¢ ¥

lof1]2]3s]4]5]6]7]

[fe]s]efse]7]5]7]

— find (m,u) follows the father references :-)

— union (m,uy, up) re-directs the father reference of one 1w, ...

392 393

The Costs:

union : O(1)
find o O(depth(s

7

Strategy to Avoid Deep Trees:

1

)

e Put the smaller tree below the bigger !

e Use find to compress paths ...

395

(1) @ @
N 1
(0) 3) (5)

f f
®)

[oft]2]3[4]5]6]7]

[ef3f1]4f7]5]7]

A 2 T2

396

O
N
22/
@ @
@ [6
g ~
N =/
1 34 6
5|1

402

Note:

e By this data-structure, 7 union- und s find operations
require time O(n +m - «(n,n))

// o the inverse Ackermann-function -

e For our application, we only must modify union such that roots
are from Vars whenever possible.

e This modification does not increase the asymptotic run-time. -

Summary:

The analysis is extremely fast — but may not find very much.

404

Note:

e DBy this data-structure, 7 union- und m find operations
require time O(n +m - a(n,n))

/f

/"« the inverse Ackermann-function :-)

e For our application, we only must modify union such that roots

are from Vars whenever possible.

e This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

404

Background 3: Fixpoint Algorithms

Consider: i 3 filey, oo xn), i=1,..., n

Observation:

RR-Iteration is inefficient:

— We require a complete round in order to detect termination :-(

— If in some round, the value of just one unknown is changed, then
we still re-compute all :-(

— The practical run-time depends on the ordering on the variables
=

405

[dea: Worklist Iteration

If an unknown x; changes its value, we re-compute all unknowns
which depend on ;. Technically, we require:

— thelists Dep f; of unknowns which are accessed during
evaluation of f;. From that, we compute the lists:

Iz:] = {x; | @ € Dep f;}
ie.,alistofall x; whichdepend on the value of a;;
— thevalues D[x;] ofthe xz; whereinitially D[z;]= L;

— alist W of all unknowns whose value must be recomputed ...

406

' o)—}
The Algorithm: K\ ﬁt’(\b @

W=[zy,...,2,];
while (W £ []) {

r; = extract W;
t = fieval
t = Dlz;)Ut;
i (¢ # Dlad) {
Dz;] = ¢
W = append [[z;] W;

where : eval x

407

Example: Example:
1] 2 T 2 {r{} U I3 ‘ D V;I’|} ‘
T9 2 xo O x3Nia,b} @
ry 2 z3 2 x U{c}

408 409
Theorem Example:
Let = 3O fi(zy,...,2,), i=1,..., n denote a constraint system xy 2O {alUuxs :]
- Dz 1 } D[th 7]
over the complete lattice D ofhight A > 0. 2y D z3n{a,b} N
_ r3 2 x U {r}
(1) The algorithm terminates after at most % - N evaluations of {a}
right-hand sides where {a}
S b ([0
N = Z(l +# (Dep f3)) // size of the system :-)
i=1 T {z3} {a,c}
(2) The algorithm returns a solution. To 1] {a,c}
Ifall f; are monotonic, it returns the least one. 23 | {21, 22} {a,c}

Example:

Theorem
. s ;) — X ac i /Ste €T 2 C [4
Let z; J fi(zy,.. .‘.‘z n) i . 1,..., n denote a constraint system . 2 {a}Uuxs ‘ Dl ‘ Dia] | D3] H T ‘
over the complete lattice D of hight /> 0. z2 D w3n{a,b)
o 0 0 0
I3 2 T U {r}
(1) The algorithm terminates after at most /s - N evaluations of {a}] 0
right-hand sides where {a} 0 0
- u . \ a 0 a,c
N = Z(l +# (Dep i) // size of the system :-) . ta} ta.c)
i=1 x| {xs} {a,c} 0 {a,c}
(2) The algorithm returns a solution. Ty 0 {a,c} 0 {a,c}
Ifall f; are monotonic, it returns the least one. x| {21, 22} {a,c}| {a} |{a,c}
410 409
Proof:
Theorem
Ad (1):
Let @ J filzy,oown), i=1..., n denote a constraint system Every unknown x; may change its value at most / times :-)

over the complete lattice D of hight /> 0.

(1) The algorithm terminates after at most /- N evaluations of
right-hand sides where

N = Z(l +# (Dep £)) // size of the system :-)

i=1

(2) The algorithm returns a solution.
Ifall f; are monotonic, it returns the least one.

410

Each time, the list [[z,;] isadded to 1}V .

Thus, the total number of evaluations is:

IA

n+ Y (- # (L))
= n+h- 300 # ()

= n+h-Y o, #(Depfi)
b3 (L+# (Dep)
h-N

I

411

Ad (2):
We only consider the assertion for monotonic ~ f; .

Let D, denote the least solution. We show:

o Dylz;] 3 Dlx;] (all the time)
e Dz D fieval = z; €W (at exit of the loop body)

e On termination, the algo returns a solution :-))

412

The Algorithm:

W= [z1,...,: T
while (W £ []){
r; = extractW;
t = fieval;
t = Dzut
f (¢ 4 Dl {
Dz = &
54 = append [[z;] W;
t
1
where : eval z; = Dlxy]
407

Example:

T 2 {r@} U xq
xy 2 w3Nia,b}
I3 2 T U {f}

408

Warning:
e The algorithm relies on explicit dependencies among the unknowns.

So far in our applications, these were obvious. This need not always
be the case :-(

e We need some strategy for extract which determines the next
unknown to be evaluated.

e It would be ingenious if we always evaluated first and then accessed
the result ... :-)

— recursive evaluation ...

414

0.4

Discussion:

Idea:
e In the example, fewer evaluations of right-hand sides are required
— If during evaluation of f; , an unknown x; isaccessed, x; than for RR-iteration :-)
is first solved recursively. Then z; isaddedto [I[z;] :-) o,
K ' [z +) e The algo also works for non-monotonic f; :-)
eval z; x; = solvex;; e Formonotonic f;, the algo can be simplified:
Tay] = T}) (= DRjut] — [
Dia,);
e In presence of widening, we replace:
— Inorder to prevent recursion to descend infinitely, a set Stable 7] Do
of unknown is maintained for which solve just looks up their t = Diai] Ut; > [t = Dlail Uty
values :-) e In presence of Narrowing, we replace:
Initially, Stable =0 ... -
— |t = Dz At
415 413
Idea:
Warning:
— If during evaluation of f; , an unknown z; is accessed, z;
e The algorithm relies on explicit dependencies among the unknowns.

So far in our applications, these were obvious. This need not always

be the case :-(

We need some strategy for extract which determines the next
unknown to be evaluated.

It would be ingenious if we always evaluated first and then accessed

the result ...)

— recursive evaluation ...

414

is first solved recursively. Then z; isaddedto [I[z;] :-)

eval z; x; = solvex;;
™ Iz = Iz;] U {a)

— In order to prevent recursion to descend infinitely, a set Stable
of unknown is maintained for which solve just looks up their
values :-)

Tnitially, Stable =0 ...

415

AR
Xﬁﬁ 7\/] @Hxx

solve z; = if (x; & Stable) {
Stable = Stable U {z;};
. Consider our standard example:
t = fi(eval xy);
t = Dz U %'L’
i z;]) _ _ | zy O wx3N{a,b}

r3 2w U{c}

The Function solve :

Example:

Stable = Stable\W;

app solve W;
A trace of the fixpoint algorithm then looks as follows:

418

416

solve x5 eval x2 73 solve x5 eval T3 11 solve a1 eval 1 T3 solve 3 solve x2 eval 22 T3 solve x3 eval 3 solve x eval 21 x5

A

I[za] = {x1}

1}
Djz a}
I[x1] = {z3}
{a)
Ixa] =9
solve z eval 1 =2 solve x3
I[za] = {z1}
{a,c}
D[z1] = {a, ¢}
HENE]
solve g eval 3 1 solve o} solve x3 eval &3 = solve xy
I[za] = {xa} Ir1] = {z3}
{a.c} {a,c}

J/ fza] = {21,22) Iza] = {x1,22)
{a,c} {a.c}

419

419

solve x5

