Script generated by TTT

Title: Seidl: Programmoptimierung (21.11.2012)
Date: Wed Nov 21 09:34:01 CET 2012
Duration: 87:16 min

Pages: 39

Problems:

e Addresses are from N -(
There are no infinite strictly ascending chains, but ...
e Exact addresses at compile-time are rarely known :-(

e At the same program point, typically different addresses are
accessed ...

e Storing at an unknown address destroys all information M :-(

—— constant propagation fails :-(

—— memory accesses/pointers kill precision :-(

364

M — ET)E_

e Extend the abstract state by an abstract store M

(3) Constant Propagation:

L4 Execute accesses to known memory locations!

(D®{x— Ma}, M) if

[z = Mle|;]* (D, M) = [(fD=acT
(D {z— T}, M) otherwise
(D, M & {a s [e]FD}) if

[Mle,] = ex;]* (D, M) = [e]f D=acT
(D, T) otherwise where
Ta = T (a € N)
363

Simplification:

We consider pointers to the beginning of blocks A which allow
indexed accesses A[i])

e We ignore well-typedness of the blocks.

. New statements:

x =new(); // allocation of a new block

// indexed read access to a block

[/ indexed write access to a block

z = yle|;

yled = ex:

Blocks are possibly infinite -

e For simplicity, all pointers point to the beginning of a block.

365

Simple Example:

-

r = Newl);

366

The Semantics:

369

The Semantics:

0

More Complex Example:

A

{0)

1r = Nul;
r = Null; ¢
(1)

while (£ # Null) { Neg(t # Null) /
h=t; @
t = t[0];

372

Pos(t # Null)

—’ = .

TN N N TN y
LG}I—(—#U’\-—I—]_JL-'—I—LGI—I—‘[U

More Complex Example:

RO
r = Null
r = Null; YL '
1y
while (¢ £ Null) { Neg(t # Null) /7 Pos(t # Null
h=t,) (2)
t = I‘[O]: |g =
hl0] =75 + = t[0]
(1)
r=h; MR
1 &
(6\

A store consists of a finite collection of blocks.

After h new-operations we obtain:

Addr, = {refa|0<a<h} // addresses
Valr, = Addr, UZ // values
Store, = (Addrp x Ny) — Valy, // store
State, = (Vars — Valy,) x Storey, /| states
For simplicity, we set: 0 = Null
373

A store consists of a finite collection of blocks.

After h new-operations we obtain:

Addr, = {refa|0<a<h} // addresses

Val, = Addr, UZ // values

Store, = Ydddr, x No) — Val, /| store

Stater, = (Vars — Valy) x Storey, // states
For simplicity, we set: 0 = Null

Let (p,p) € State,, . Then we obtain for the new edges:

[z = new();] (p,;}) = (p@®{z—refh}, {'A;‘Z)

[= ylels] (o, o)
[yled] = ea:] (o,)

ygﬂdhﬂHUHEN@
(pE{z—=pnlpu.ldp)t n)
= (p.ue{lpy,[eldp) — [e]p})

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

Let (p,p) € State,, . Then we obtain for the new edges:

[z =new():] (p,p) = (p&{z— ref b} (Z
p& {(ref h,) i € No})

Addr, = {refa|0<a<h} // addresses (
al, = Addr,UZ // values [z=ylel:] (p,) = (pE{z—=plpy.[elp)}, 1)
Storen = (Addry, x Ny) — Val, // store e = exl (o) = (@ {(py,Terl p) v+ [eal p})
State;, = (Vars — Valy) x Storey, // states /{\ 7\
For simplicity, we set: 0 = Null
373 374
Concrete Semantics: Caveat:
A store consists of a finite collection of blocks. This semantics is too detailled in that it computes with absolute
Addresses. Accordingly, the two programs:
After h new-operations we obtain:
x = new(); y = new();
y = new(); r = new();
Addr, = {refa|0<a<h} // addresses
are not considered as equivalent !!?
Valy, = AddryUZ /] values d
Storey, = (Addry, x Ny) — Val, // store
State, = (Vars — Valy) x Storey /) states Possible Solution:

For simplicity,

we set: 0 = Null

Define equivalence only up to permutation of addresses :-)

!

375

Alias Analysis 1. Idea:

e Distinguish finitely many classes of blocks.
e Collect all addresses of a block into one set!

e Use sets of addresses as abstract values!

... in the Simple Example:

o ATuci L
—— Points-to-Analysis g e ‘ H T ‘ y H (0,1) H
(0 0 0 0 0
f_r.‘ = new(1 { 0 l)} 0 0
Add = Edges // creation edges (2) ©
z[0] =4 2 0, 2
af = 9Addr // abstract values g ‘ 10, D} 1 {(1,2)} 0
. oy : 0, 2 2
Stordd = Addr' — Val // abstract store Yull] =7 30D 2} A 2)}
. -)) 4 0,1 1,2 1,2
Staté = (Vars — Val*) x Store* // abstract states & {0, D} [0} {0, 2)}
// complete lattice !!!
376 377
| Hi//? (e S 3 A =3
Caveat:
The Effects of El.LQHH
The value Null has been ignored. Dereferencing of Null or
negative indices are not detected :-(
[) (D, M) = (D,M) Destructive updates are only possible for variables, not for blocks in
[Pos(e),)J* (D, M) (D. M) storage!
[z =y,)]]ﬂ (D, M) (D& {z > Dy}, M) —— no information, if not all block entries are initialized before
[(Co=e, F(D,M) = D&fe—0hM) , e Vars wse (0

[(u, z = new();,v)]* (D, M)
[= ylel,) (D, M)

(D& {x — {(u,0)}}, M)

(Da {z— U{M(f)| f € Dy}}, M)
[Coyle] =2,)F(D.M) = (D.M&{fe (MfuDz)|feDy})

The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics
-l

In order to prove correctness, we first instrument the concrete
semantics with extra information which records where a block has
been created.

The Effects of El.LQHH

s IF (D, M)

Pos(e),)]* (D, M)
T =1, _)]]ﬂ (D, M)
r=¢e;,)J*(D,M)

[(u, z = new();,v)]* (D, M)
[= ylel,) (D, M)
[ler] = 23, O (D, M)

(D. M)
(D. M)

(D@ {z s Dy}, M)

(D& {z— 0L M) , eg Vars
(D& {z— {(w,0)}}. M)
(D@ {z U{M(f)IJjDE Dy}}, M)
(D,M&{fr (Mf

z) | feDy})

e We compute possible points-to information.

e From that, we can extract may-alias information.

e The analysis can be rather expensive — without finding frery much
-l

e Separate information for each program point can perhaps be
abandoned ??

380

e We compute possible points-to information.

e From that, we can extract may-alias information.

e The analysis can be rather expensive — without finding very much
-l

e Separate information for each program point can perhaps be

abandoned 77

380

Alias Analysis 2. Idea:

Eachedge (u,lab,v) gives rise to constraints:
Compute for each variable and address a value which safely approximates

the values at every program point simultaneously !

lab Constraint
... in the Simple Example: z=u Plz] 2 Py
5 z=new(); | Plz] 2 {(u,v)}
Y= new(); r=ylel; | Pl] 2 WP fePll}
)7 A vl = |PUfl 2 (FeP])?Pl]: 0
Y — newlg): ‘
7Y v | {(1,2)} forall [e Addrf
Y0 =y (0,1) [{(1,2)}
(3) .
N — T (1,2) 0 Other edges have no effect :-)
381 382
Discussion:
Caveat:
i rai i i Ok -
This semantics is too detailled in that it computes with absolute e The resulting consiraint system has size for
abstract addresses and 7 edges :-(

Addresses. Accordingly, the two programs:

e The number of necessary iterations is O(k + 2 Vars

z = new(); y = new();)

e The computed information is perhaps still too zu precise 17

y = new(); z = new();) ;

e Inorder to prove correctness of a solution s* € States® we show:
are not considered as equivalent !!?

] 2 (o]

Possible Solution:
A A

[]

Define equivalence only up to permutation of addresses :-)

383

w
=5
=

Eachedge (u,lab,v) gives rise to constraints:

Discussion:

e The resulting constraint system has size O(k-n) for
abstract addresses and edges -
lab Constraint ° (
e The number of necessary iterations is 0k + # Vars
=1y Plz] 2 Pl) :
) acica 117
v —new(); | Ple] 2 {(u0)} e The computed information is perhaps still too zu precise !!7
e Inorder to prove correctness of a solution s* € States® we show:
r=yll; | Pkl 2 WP fePll} :
ylel] =z |Plf] 2 (FeP)?Pz] : 0 ’_—| [x] :I
forall [e Addrt N
A A
Other edges have no effect :-) E'
382 383
Discussion:
Eachedge (u,lab,v) gives rise to constraints:
e The resulting constraint system has size O(/ - for
abstract addresses and n edges -
lab Constraint ° t l _(f ,
e The number of necessary iterations is (L + 4 a
T =1 Plz] 2 Ply] i
. : : : aricn |17
v = new(): | Pl 2 {(w,0)} e The computed information is perhaps still too zu precise !!7
e Inorder to prove correctness of a solution s° € States® we show:
r=yle; | Pl 2 WP S ePll} :

yled] =z | P[f] (fePl)?Pz] - 0
A~ forall fe Addr?

Other edges have no effect - %- (& ,f—- # \/Ww

I

382

‘l’.
Ex L o]
A A

[]

383

Discussion:

e The resulting constraint system has size O(L-n) for
abstract addresses and . edges :-(

e The number of necessary iterations is ~ O(k + 7 Vars

e The computed information is perhaps still too zu precise !!?

e Inorder to prove correctness of a solution s* € States® we show:

383

Alias Analysis 3. Idea:

Determine one equivalence relation = onvariables = and memory
accesses y[| with s, =s, whenever s;,s; may contain the
same address at some ., s

... in the Simple Example:

.
\i = new();
(1)
\'_*,“‘ = New(); = _ {{J}
E o o
® .
i =7

384

Discussion:

— We compute a single information fo the whole program.

— The computation of this information maintains partitions
m={P.....,Pn} =)

— Individual sets F; are identified by means of representatives
pi € B

— The operations on a partition 7 are:

find (7, p) = o ifpe F,
// returns the representative
union (7, i, i) = AP UPLYULP, | iy £ 5 £ ia}

// unions the represented classes

Discussion:

— We compute a single information fo the whole program.

— The computation of this information maintains partitions
m={P,..., P.} o)

— Individual sets F; are identified by means of representatives
pi € Fi.

— The operations on a partition 7 are:

find (7, p) = p ifpe P,
J// returns the representative
union (7, p; . pi,) = {FP, UP,}U{P;| i1 #j#is}

// unions the represented classes

If 21,20 € Vars are equivalent, then also z;[] and
must be equivalent :-)

If P,n Vars # 0, then we choose p; € Vars . Then we can

apply union recursively :

union™ (7, ¢y, q2) = let py, = find (m,q)
pi, = find(m, q)
in if p;, ==p;, then

else let m = union (7, ps,, Piy)

in if p;,, pi, € Vars then

union™ (7, pi, [], Pil 1)

The analysis iterates over all edges once:

m = {{?}{f[”— ‘ i “[“};
forall k= (_, lab,) do w=[lab]*m;

where:
r=ylfr = union® (7, x,y)

sJFr = union® (m,z,y[])

[

[z =yleFx = union* (7, z,y[])
lyle] = =]

[

lab]* = =7 otherwise

... in the More Complex Example:
.. in the Simple Example:
O
r = Null;
Ao B
Y= new(); e b {11} 1) Neg(t # Null) /" JPos(t # Nul) {hd A e} Rl T} 3}
Yo e 0.1) | L b Al 13 1) @ 8. 3| (b} 0 LA
@ (1,2) |} Auh Lol 1} ol 11} ® (3,4 (k10T
/3‘ o (2,3) | {{=}, v, =[]} {wl 11} i'l = t[0] (4,5) bt B[L1
Ay =7 (3,4) | {{=}Aw. =1} {wll}} N (5,6) b, t,r, b[1,4[1}}
(4) (5)
yrn
&

