Script generated by TTT

Title: Seidl: Programmoptimierung (21.11.2012)

Date: Wed Nov 21 09:34:01 CET 2012

Duration: 87:16 min

Pages: 39

Problems:

- Addresses are from N :-(
 There are no infinite strictly ascending chains, but ...
- Exact addresses at compile-time are rarely known :-(
- At the same program point, typically different addresses are accessed ...
- \bullet Storing at an unknown address destroys all information $\ M$:-(
- constant propagation fails :-(
- → memory accesses/pointers kill precision :-(

- (3) Constant Propagation:
- Extend the abstract state by an abstract store M
- Execute accesses to known memory locations!

Simplification:

- We consider pointers to the beginning of blocks A which allow indexed accesses A[i] :-)
- We ignore well-typedness of the blocks.
- New statements:

$$x = \text{new}();$$
 // allocation of a new block $x = y[e];$ // indexed read access to a block $y[e_1] = e_2;$ // indexed write access to a block

- Blocks are possibly infinite :-)
- For simplicity, all pointers point to the beginning of a block.

Simple Example:

```
\begin{split} x &= \mathsf{new}(); \\ y &= \mathsf{new}(); \\ x[0] &= y; \\ y[1] &= 7; \end{split}
```


366

The Semantics:

369

The Semantics:

371

More Complex Example:

```
r = \text{Null}; while (t \neq \text{Null}) { h = t; t = t[0]; h[0] = r; r = h; } \begin{cases} 1 & \text{Neg}(t \neq \text{Null}) \\ 0 & \text{Pos}(t \neq \text{Null}) \\ 0 & \text{Pos
```

More Complex Example:

```
r = \text{Null}; while (t \neq \text{Null}) {  h = t; \\ t = t[0]; \\ h[0] = r; \\ r = h;  }  \begin{cases} \text{Neg}(t \neq \text{Null}) \\ \text{Pos}(t \neq \text{Null}) \\ \text{Pos}(t \neq \text{Null}) \\ \text{Neg}(t \neq \text{Null})
```

372

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

$$\begin{array}{lll} \textit{Addr}_h &=& \{\text{ref } a \mid 0 \leq a < h\} & \textit{//} & \text{addresses} \\ \textit{VaI}_h &=& \textit{Addr}_h \cup \mathbb{Z} & \textit{//} & \text{values} \\ \textit{Store}_h &=& (\textit{Addr}_h \times \mathbb{N}_0) \rightarrow \textit{Val}_h & \textit{//} & \text{store} \\ \textit{State}_h &=& (\textit{Vars} \rightarrow \textit{Val}_h) \times \textit{Store}_h & \textit{//} & \text{states} \end{array}$$

For simplicity, we set: 0 = Null

373

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

$$\begin{array}{lll} \textit{Addr}_h &=& \{ \text{ref } a \mid 0 \leq a < h \} & \textit{//} & \text{addresses} \\ \textit{Val}_h &=& \textit{Addr}_h \cup \mathbb{Z} & \textit{//} & \text{values} \\ \textit{Store}_h &=& (\textit{Addr}_h \times \mathbb{N}_0) \rightarrow \textit{Val}_h & \textit{//} & \text{store} \\ \textit{State}_h &=& (\textit{Vars} \rightarrow \textit{Val}_h) \times \textit{Store}_h & \textit{//} & \text{states} \end{array}$$

For simplicity, we set: 0 = Null

Let $(\rho,\mu)\in State_{\hbar}$. Then we obtain for the new edges:

373

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

```
\begin{array}{lll} \textit{Addr}_h &=& \{ \text{ref } a \mid 0 \leq a < h \} & \textit{//} & \text{addresses} \\ \textit{Val}_h &=& \textit{Addr}_h \cup \mathbb{Z} & \textit{//} & \text{values} \\ \textit{Store}_h &=& (\textit{Addr}_h \times \mathbb{N}_0) \rightarrow \textit{Val}_h & \textit{//} & \text{store} \\ \textit{State}_h &=& (\textit{Vars} \rightarrow \textit{Val}_h) \times \textit{Store}_h & \textit{//} & \text{states} \end{array}
```

For simplicity, we set: 0 = Null

373

Let $(\rho, \mu) \in State_h$. Then we obtain for the new edges:

374

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

$$\begin{array}{lll} \textit{Addr}_h &=& \{ \text{ref } a \mid 0 \leq a < h \} & \textit{//} & \text{addresses} \\ \textit{Val}_h &=& \textit{Addr}_h \cup \mathbb{Z} & \textit{//} & \text{values} \\ \textit{Store}_h &=& (\textit{Addr}_h \times \mathbb{N}_0) \rightarrow \textit{Val}_h & \textit{//} & \text{store} \\ \textit{State}_h &=& (\textit{Vars} \rightarrow \textit{Val}_h) \times \textit{Store}_h & \textit{//} & \text{states} \end{array}$$

For simplicity, we set: 0 = Null

Caveat:

This semantics is too detailled in that it computes with absolute Addresses. Accordingly, the two programs:

$$x = \text{new}();$$
 $y = \text{new}();$ $y = \text{new}();$ $x = \text{new}();$

are not considered as equivalent!!?

Possible Solution:

Define equivalence only up to permutation of addresses :-)

375

Alias Analysis 1. Idea:

- Distinguish finitely many classes of blocks.
- Collect all addresses of a block into one set!
- Use sets of addresses as abstract values!

⇒ Points-to-Analysis

```
Addr^{\sharp} = Edges // creation edges Val^{\sharp} = 2^{Addr^{\sharp}} // abstract values Store^{\sharp} = Addr^{\sharp} \rightarrow Val^{\sharp} // abstract store State^{\sharp} = (Vars \rightarrow Val^{\sharp}) \times Store^{\sharp} // abstract states // complete lattice !!!
```

376

... in the Simple Example:

Caveat:

	x	y	(0, 1)
0	Ø	Ø	Ø
1	{(0,1)}	Ø	Ø
2	{(0,1)}	$\{(1,2)\}$	Ø
3	$\{(0,1)\}$	$\{(1,2)\}$	$\{(1,2)\}$
4	$\{(0,1)\}$	$\{(1,2)\}$	$\{(1,2)\}$

377

The Effects of Edges:

$$\begin{split} & [\![(_,;,_)]\!]^\sharp \, (D,M) & = \ (D,M) \\ & [\![(_,\operatorname{Pos}(e),_)]\!]^\sharp \, (D,M) & = \ (D,M) \\ & [\![(_,x=y;,_)]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto D\,y\},M) \\ & [\![(_,x=e;,_)]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto\emptyset\},M) & , \quad e\not\in \mathit{Vars} \\ & [\![(u,x=\mathsf{new}();,v)]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto\{(u,v)\}\},M) \\ & [\![(_,x=y[e];,_)]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto\bigcup\{M(f)\mid f\in D\,y\}\},M) \\ & [\![(_,y[e_1]=x;,_)]\!]^\sharp \, (D,M) & = \ (D,M\oplus\{f\mapsto(M\,f\cup D\,x)\mid f\in D\,y\}) \end{split}$$

ref (e,5) & e

- The value Null has been ignored. Dereferencing of Null or negative indices are not detected :-(
- Destructive updates are only possible for variables, not for blocks in storage!

 \implies no information, if not all block entries are initialized before use :-((

The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics :-(

In order to prove correctness, we first instrument the concrete semantics with extra information which records where a block has been created. Sem Sem

The Effects of Edges:

$$\begin{split} & [\![(_,;,_)]\!]^\sharp \, (D,M) & = \ (D,M) \\ & [\![(_,\operatorname{Pos}(e),_)]\!]^\sharp \, (D,M) & = \ (D,M) \\ & [\![(_,x=y;,_)]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto D\,y\},M) \\ & [\![(_,x=e;,_)]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto\emptyset\},M) & , \quad e\not\in \mathit{Vars} \\ & [\![(\pmb{u},x=\mathsf{new}();,\pmb{v})]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto\{(\pmb{u},\pmb{v})\}\},M) \\ & [\![(_,x=y[e];,_)]\!]^\sharp \, (D,M) & = \ (D\oplus\{x\mapsto\bigcup\{M(f)\mid f\in D\,y\}\},M) \\ & [\![(_,y[e_1]=x;,_)]\!]^\sharp \, (D,M) & = \ (D,M\oplus\{f\mapsto(Mf\bigcup Dx)\mid f\in D\,y\}) \end{split}$$

...

- We compute possible points-to information.
- From that, we can extract may-alias information.
- The analysis can be rather expensive without finding very much
- Separate information for each program point can perhaps be abandoned ??

380

...

- We compute possible points-to information.
- From that, we can extract may-alias information.
- The analysis can be rather expensive without finding very much
 :-(
- Separate information for each program point can perhaps be abandoned ??

2. Idea: Alias Analysis

Compute for each variable and address a value which safely approximates the values at every program point simultaneously!

... in the Simple Example:

$$\begin{array}{c} 0 \\ \forall \, x = \, \mathrm{new}(); \\ 1 \\ \forall \, y = \, \mathrm{new}(); \\ 2 \\ \forall \, x[0] = y; \\ 3 \\ \forall \, y[1] = 7; \end{array} \qquad \begin{array}{c} x \\ \{(0,1)\} \\ y \\ \{(1,2)\} \\ (0,1) \\ \{(1,2)\} \\ (1,2) \end{array}$$

381

Ø

Caveat:

This semantics is too detailled in that it computes with absolute Addresses. Accordingly, the two programs:

$$x = \text{new}();$$
 $y = \text{new}();$ $y = \text{new}();$ $x = \text{new}();$

are not considered as equivalent!!?

Possible Solution:

Define equivalence only up to permutation of addresses :-)

Each edge (u, lab, v) gives rise to constraints:

lab	Constraint
x = y;	$\mathcal{P}[x] \supseteq \mathcal{P}[y]$
x = new();	$\mathcal{P}[x] \supseteq \{(\mathbf{u}, \mathbf{v})\}$
x = y[e];	$\mathcal{P}[x] \supseteq \bigcup \{\mathcal{P}[f] \mid f \in \mathcal{P}[y]\}$
$y[e_1] = x;$	$\mathcal{P}[f] \supseteq (f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
	for all $f \in Addr^{\sharp}$

Other edges have no effect :-)

Discussion:

- The resulting constraint system has size $\mathcal{O}(k \cdot n)$ for kabstract addresses and n edges :-(
- The number of necessary iterations is $\mathcal{O}(k + \# Vars)$...
- The computed information is perhaps still too zu precise!!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

Each edge (u, lab, v) gives rise to constraints:

lab			Constraint
x = y;	$\mathcal{P}[x]$	\supseteq	$\mathcal{P}[y]$ $\{(u, v)\}$ $\bigcup \{\mathcal{P}[f] \mid f \in \mathcal{P}[y]\}$ $(f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
x = new();	$\mathcal{P}[x]$	\supseteq	$\{(u,v)\}$
x = y[e];	$\mathcal{P}[x]$	\supseteq	$\bigcup \{\mathcal{P}[f] \mid f \in \mathcal{P}[y]\}$
$y[e_1] = x;$	$\mathcal{P}[f]$	\supseteq	$(f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
			for all $f \in Addr^{\sharp}$

Other edges have no effect :-)

382

Each edge (u, lab, v) gives rise to constraints:

lab		Constraint
x = y;	$\mathcal{P}[x] \supseteq$	$\mathcal{P}[y]$
x = new();	$\mathcal{P}[x] \supseteq$	$\{(u,v)\}$
x = y[e];	$\mathcal{P}[x] \supseteq$	$\{(u, v)\}\$ $\bigcup \{\mathcal{P}[f] \mid f \in \mathcal{P}[y]\}\$ $(f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
$y[e_1] = x;$	$\mathcal{P}[f] \supseteq$	$(f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
	1	for all $f \in Addr^{\sharp}$

Other edges have no effect :-)

2(2+#Vas)

Discussion:

- The resulting constraint system has size $\mathcal{O}(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is O(k + # Vars) ...
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

383

Discussion:

- The resulting constraint system has size $\mathcal{O}(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is O(k + # Vars)...
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

Discussion:

- The resulting constraint system has size $\mathcal{O}(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is $\mathcal{O}(k + \# Vars)$...
- The computed information is perhaps still too zu precise!!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

383

Alias Analysis 3. Idea:

Determine one equivalence relation \equiv on variables x and memory accesses $y[\]$ with $s_1 \equiv s_2$ whenever s_1, s_2 may contain the same address at some u_1, u_2

... in the Simple Example:

384

Discussion:

- → We compute a single information fo the whole program.
- \rightarrow The computation of this information maintains partitions $\pi = \{P_1, \dots, P_m\} \quad : \textbf{-})$
- \rightarrow Individual sets P_i are identified by means of representatives $p_i \in P_i$.
- \rightarrow The operations on a partition π are:

```
\begin{array}{lll} \text{find } (\pi,p) & = & p_i & \text{if } p \in P_i \\ & /\!/ & \text{returns the representative} \\ \\ \text{union } (\pi,p_{i_1},p_{i_2}) & = & \{P_{i_1} \cup P_{i_2}\} \cup \{P_j \mid i_1 \neq j \neq i_2\} \\ & /\!/ & \text{unions the represented classes} \end{array}
```

Discussion:

- → We compute a single information fo the whole program.
- \rightarrow The computation of this information maintains partitions $\pi = \{P_1, \dots, P_m\}$:-)
- \rightarrow Individual sets P_i are identified by means of representatives $p_i \in P_i$.
- ightarrow The operations on a partition π are:

$$\begin{array}{lll} \operatorname{find}\left(\pi,p\right) & = & p_i & \text{if } p \in P_i \\ & /\!/ & \text{returns the representative} \\ \\ \operatorname{union}\left(\pi,p_{i_1},p_{i_2}\right) & = & \left\{P_{i_1} \cup P_{i_2}\right\} \cup \left\{P_j \mid i_1 \neq j \neq i_2\right\} \\ & /\!/ & \text{unions the represented classes} \end{array}$$

385

- \rightarrow If $x_1, x_2 \in Vars$ are equivalent, then also $x_1[\]$ and $x_2[\]$ must be equivalent :-)
- \rightarrow If $P_i \cap Vars \neq \emptyset$, then we choose $p_i \in Vars$. Then we can apply union recursively:

```
\begin{array}{lll} \text{union}^* \left( \pi, q_1, q_2 \right) & = & \text{let} & p_{i_1} & = & \text{find} \left( \pi, q_1 \right) \\ & p_{i_2} & = & \text{find} \left( \pi, q_2 \right) \\ & \text{in} & \text{if} & p_{i_1} == p_{i_2} \text{ then } \pi \\ & & \text{else} & \text{let} & \pi & = & \text{union} \left( \pi, p_{i_1}, p_{i_2} \right) \\ & & \text{in} & \text{if} & p_{i_1}, p_{i_2} \in \textit{Vars} \text{ then} \\ & & & & \text{union}^* \left( \pi, p_{i_1} \right[ \right], p_{i_2} [ \ ] ) \end{array}
```

386

388

The analysis iterates over all edges once:

$$\begin{split} \pi &= \{\{x\}, \{x[\]\} \mid x \in \mathit{Vars}\}; \\ \text{forall} \quad & k = (_, lab, _) \quad \text{do} \quad \pi = \llbracket lab \rrbracket^\sharp \pi; \end{split}$$

where:

387

... in the Simple Example:

... in the More Complex Example:

	$\{\{h\}, \{r\}, \{t\}, \{h[]\}, \{t[]\}\}$
(2,3)	$\{[h,t], \{r\}, [h[],t[]]\}$
(3, 4)	$\{ \overline{\{h,t,h[\],t[\]\}},\{r\} \}$
(4, 5)	$\{ [\{h,t,r,h[],t[]\}] \}$
(5,6)	$\{\{h, t, r, h[\], t[\]\}\}$