Script generated by TTT

Title: Seidl: Programmoptimierung (19.11.2012)

Date: Mon Nov 19 15:03:43 CET 2012

Duration: 89:08 min

Pages: 36

Problem:

- \rightarrow The solution can be computed with RR-iteration after about 42 rounds :-(
- → On some programs, iteration may never terminate :-((

Idea 1: Widening

- Accelerate the iteration at the prize of imprecision :-)
- Allow only a bounded number of modifications of values !!!
 ... in the Example:
- ullet dis-allow updates of interval bounds in $\,\mathbb{Z}\,...$
 - ⇒ a maximal chain:

$$[3,17] \sqsubset [3,+\infty] \sqsubset [-\infty,+\infty]$$

Example:

	1	i
	l	u
0	$-\infty$	+∞
1	0	42
2	0	41
3	0	41
4	0	41
5	0	41
6	1	42
7	_	L
8	42	42

335

a 11600 a= 9116

Formalization of the Approach:

 $\mathbf{7} \text{Let} \quad x_i \supseteq f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$ (1)

denote a system of constraints over \mathbb{D} where the f_i are not necessarily monotonic.

Nonetheless, an accumulating iteration can be defined. Consider the system of equations:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
 (2)

We obviously have:

- (a) \underline{x} is a solution of (1) iff \underline{x} is a solution of (2).
- (b) The function $G: \mathbb{D}^n \to \mathbb{D}^n$ with $G(x_1, \dots, x_n) = (y_1, \dots, y_n)$, $y_i = x_i \sqcup f_i(x_1, \dots, x_n)$ is increasing, i.e., $x \sqsubseteq Gx$ for all $x \in \mathbb{D}^n$.

(c) The sequence $G^k \perp 1$, $k \geq 0$, is an ascending chain:

$$\bot \sqsubseteq G \bot \sqsubseteq \ldots \sqsubseteq G^k \bot \sqsubseteq \ldots$$

- (d) If $G^k \perp = G^{k+1} \perp = y$, then y is a solution of (1).
- (e) If $\mathbb D$ has infinite strictly ascending chains, then (d) is not yet sufficient ...

but: we could consider the modified system of equations:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
(3)

for a binary operation widening:

$$\sqcup : \mathbb{D}^2 \to \mathbb{D}$$
 with $v_1 \sqcup v_2 \sqsubseteq v_1 \sqcup v_2$

(RR)-iteration for (3) still will compute a solution of (1) :-)

338

(c) The sequence $G^k \perp 1$, $k \geq 0$, is an ascending chain:

$$\perp \sqsubseteq G \perp \sqsubseteq \ldots \sqsubseteq G^k \perp \sqsubseteq \ldots$$

- (d) If $G^k \perp = G^{k+1} \perp = y$, then y is a solution of (1).
- (e) If D has infinite strictly ascending chains, then (d) is not yet sufficient ...

but: we could consider the modified system of equations:

$$x_i = x \bigsqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
(3)

for a binary operation widening:

$$\sqcup: \mathbb{D}^2 \to \mathbb{D}$$
 with $v_1 \sqcup v_2 \sqsubseteq v_1 \sqcup v_2$

(RR)-iteration for (3) still will compute a solution of (1) :-)

Formalization of the Approach:

Let
$$x_i \supseteq f_i(x_1, \dots, x_n)$$
, $i = 1, \dots, n$ (1)

denote a system of constraints over $\ \ \, \mathbb{D}\ \,$ where the $\ \, f_i\ \,$ are not necessarily monotonic.

Nonetheless, an accumulating iteration can be defined. Consider the system of equations:

$$x_i = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
 (2)

We obviously have:

- (a) \underline{x} is a solution of (1) iff \underline{x} is a solution of (2).
- (b) The function $G: \mathbb{D}^n \to \mathbb{D}^n$ with $G(x_1,\ldots,x_n)=(y_1,\ldots,y_n)\;,\quad y_i=x_i\sqcup f_i(x_1,\ldots,x_n)$ is increasing, i.e., $x\sqsubseteq Gx$ for all $x\in \mathbb{D}^n$.

337

... for Interval Analysis:

- $\bullet \quad \text{ The complete lattice is: } \quad \mathbb{D}_{\mathbb{I}} \ = \ (\mathit{Vars} \to \mathbb{I})_{\perp}$
- the widening $\ \ \sqcup$ is defined by:

$$\bot \sqcup D = D \sqcup \bot = D \qquad \text{and for} \quad D_1 \neq \bot \neq D_2:$$

$$(D_1 \sqcup D_2) x = (D_1 x) \sqcup (D_2 x) \qquad \text{where}$$

$$[l_1, u_1] \sqcup [l_2, u_2] = [l, u] \qquad \text{with}$$

$$l = \begin{cases} l_1 & \text{if} \quad l_1 \leq l_2 \\ -\infty & \text{otherwise} \end{cases}$$

$$u = \begin{cases} u_1 & \text{if} \quad u_1 \geq u_2 \\ +\infty & \text{otherwise} \end{cases}$$

⇒ is not commutative !!!

Example:

$$[0,2] \sqcup [1,2] = [0,2]$$

$$[1,2] \sqcup [0,2] = [-\infty,2]$$

$$[1,5] \sqcup [3,7] = [1,+\infty]$$

- → Widening returns larger values more quickly.
- → It should be constructed in such a way that termination of iteration is guaranteed :-)
- ightarrow For interval analysis, widening bounds the number of iterations by:

$$\#points \cdot (1 + 2 \cdot \#Vars)$$

340

Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3) :-)
- Caveat: The construction of suitable widenings is a dark art !!!

 Often □ is chosen dynamically during iteration such that
 - → the abstract values do not get too complicated;
 - → the number of updates remains bounded ...

341

Our Example:

	, ,	1				
	i	L				
	l	u				
0	$-\infty$	+∞				
1	0	0				
2	0	0				
3	0	0				
4	0	0				
5	0	0				
6	1	1				
7		L				
8		Τ				

Our Example:

	1		2		3			
	l	u	l	u	l	u		
0	$-\infty$	+∞	$-\infty$	+∞				
1	0	0	0	+∞				
2	0	0	0	$+\infty$				
3	0	0	0	+∞				
4	0	0	0	+∞	di	ito		
5	0	0	0	$+\infty$				
6	1	1	1	$+\infty$				
7		L	42	+∞				
8		L	42	$+\infty$				

... obviously, the result is disappointing :-(

Idea 2:

In fact, acceleration with $\ \ \sqcup \ \$ need only be applied at sufficiently many places!

A set I is a loop separator, if every loop contains at least one point from I :-)

If we apply widening only at program points from such a set $\ I$, then RR-iteration still terminates !!!

344

346

In our Example:

 $I_1 = \{1\}$ or:

 $I_2 = \{2\}$ or:

 $I_3 = \{3\}$

345

The Analysis with $I = \{1\}$:

[0,0][[0,42]=[0,42]

The Analysis with $I = \{2\}$:

	1		2		:	3	4
	l	u	l	u	l	u	
0	$-\infty$	+∞	$-\infty$	+∞	$-\infty$	+∞	
1	0	0	0	1	0	42	
2	0	0	0	+∞	0		
3	0	0	0	41	0	41	
4	0	0	0	41	0	41	dito
5	0	0	0	41	0	41	
6	1	1	1	42	1	, 42	
7	_	L	42	+∞	42	+100	
8	_	L		Ĺ	42	42	

1101

Discussion:

- Both runs of the analysis determine interesting information :-)
- The run with $I = \{2\}$ proves that always i = 42 after leaving the loop.
- Only the run with $I = \{1\}$ finds, however, that the outer check makes the inner check superfluous :-(

How can we find a suitable loop separator *I*???

348

The Analysis with $I = \{2\}$:

]	1		2		3	4
	l	u	l	u	l	u	
0	$-\infty$	+∞	$-\infty$	+∞	$-\infty$	+∞	
1	0	0	0	1	0	42	
2	0	0	0	+∞	0	+∞	
3	0	0	0	41	0	41	
4	0	0	0	41	0	41	dito
5	0	0	0	41	0	41	
6	1	1	1	42	1	42	
7	_	L	42	+∞	42	+∞	
8	_	\perp		L	42	42	

347

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$x_i \supseteq f_i \underline{x}$$
, $i = 1, \dots, n$

Then for monotonic f_i ,

$$x \supset Fx \supset F^2x \supset \ldots \supset F^kx \supset \ldots$$

// Narrowing Iteration

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$x_i \supseteq f_i \underline{x}$$
, $i = 1, \dots, n$

Then for monotonic f_i ,

$$\underline{x} \supseteq F\underline{x} \supseteq F^2\underline{x} \supseteq \ldots \supseteq F^k\underline{x} \supseteq \ldots$$

// Narrowing Iteration

Every tuple $F^k \underline{x}$ is a solution of (1) :-)

 $Termination \ is \ no \ problem \ anymore:$

we stop whenever we want :-))

 $/\!/$ The same also holds for RR-iteration.

Narrowing Iteration in the Example:

	()
	l	u
0	$-\infty$	+∞
1	0	+∞
2	0	+∞
3	0	+∞
4	0	+∞
5	0	+∞
6	1	+∞
7	42	+∞
8	42	+∞

351

[0,0] L[1,00)

Narrowing Iteration in the Example:

			_			
	()]		
	l	u		l	u	
0	$-\infty$	+∞		$-\infty$	+∞	
1	0	$+\infty$		0	$+\infty$	K
2	0	$+\infty$	П	0	41	
3	0	$+\infty$	ľ	0	41	
4	0	$+\infty$		0	41	
5	0	$+\infty$		0	41	
6	1	$+\infty$		1	42	
7	42	$+\infty$	١.	_	L	
8	42	$+\infty$		42	$+\infty$	

352

[0,0] [1,12] = [0,41]

Narrowing Iteration in the Example:

	0			1		2	
	l	u	l	u	l	u	
0	$-\infty$	+∞	$-\infty$	$+\infty$	$-\infty$	+∞	
1	0	$+\infty$	0	+∞	0	42	
2	0	$+\infty$	0	41	0	41	
3	0	$+\infty$	0	41	0	41	
4	0	$+\infty$	0	41/	0	41	
5	0	$+\infty$	0	41	0	41	
6	1	$+\infty$	1	42	1	42	
7	42	+∞	/-	L		L	
8	42	$+\infty$	42	$+\infty$	42	42	
11/11							

Discussion:

- → We start with a safe approximation.
- \rightarrow We find that the inner check is redundant :-)
- \rightarrow We find that at exit from the loop, always i = 42:-)
- → It was not necessary to construct an optimal loop separator :-)))

Last Question:

Do we have to accept that narrowing may not terminate ????

4. Idea: Accelerated Narrowing

Assume that we have a solution $\underline{x} = (x_1, \dots, x_n)$ of the system of constraints:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (1)

Then consider the system of equations:

$$x_{i} = x_{i} f_{i} (x_{1}, \dots, x_{n}), \quad i = 1, \dots, n$$

$$(4)$$

Obviously, we have for monotonic f_i : $H^k \underline{x} = F^k \underline{x}$:-)

where
$$H(x_1,...,x_n) = (y_1,...,y_n)$$
, $y_i = x_i \sqcap f_i(x_1,...,x_n)$.

In (4), we replace \Box durch by the novel operator \Box where:

$$a_1 \sqcap a_2 \sqsubseteq a_1 \sqcap a_2 \sqsubseteq a_1$$

355

... for Interval Analysis:

We preserve finite interval bounds :-)

Therefore,
$$\bot \sqcap D = D \sqcap \bot = \bot \text{ and for } D_1 \neq \bot \neq D_2 \text{:}$$

$$(D_1 \sqcap D_2) x = (D_1 x) \sqcap (D_2 x) \text{ where }$$

$$[l_1, u_1] \sqcap [l_2, u_2] = [l, u] \text{ with }$$

$$l = \begin{cases} l_2 & \text{if } l_1 = -\infty \\ l_1 & \text{otherwise} \end{cases}$$

$$u = \begin{cases} u_2 & \text{if } u_1 = \infty \\ u_1 & \text{otherwise} \end{cases}$$

⇒ ¬ is not commutative !!!

4. Idea: Accelerated Narrowing

Assume that we have a solution $\underline{x} = (x_1, \dots, x_n)$ of the system of constraints:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (1)

Then consider the system of equations:

$$x_i = x_i \sqcap f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$

Obviously, we have for monotonic f_i : $H^k \underline{x} = F^k \underline{x}$:-)

where
$$H(x_1,...,x_n) = (y_1,...,y_n)$$
, $y_i = x_i \sqcap f_i(x_1,...,x_n)$.

In (4), we replace \square durch by the novel operator \square where:

$$a_1 \sqcap a_2 \sqsubseteq a_1 \sqcap a_2 \sqsubseteq a_1$$

355

[1,5] f[1,3] = [1,5]... for Interval Analysis: [1,3] f[1,3] = [1,3]

We preserve finite interval bounds :-)

Therefore,
$$\bot \sqcap D = D \sqcap \bot = \bot \quad \text{and for} \quad D_1 \neq \bot \neq D_2 \text{:}$$

$$(D_1 \sqcap D_2) \, x \; = \; (D_1 \, x) \sqcap (D_2 \, x) \quad \text{ where}$$

$$[l_1, u_1] \sqcap [l_2, u_2] \; = \; [l, u] \quad \text{ with}$$

$$l \; = \; \begin{cases} l_2 \quad \text{if} \quad l_1 = -\infty \\ l_1 \quad \text{otherwise} \end{cases}$$

$$u \; = \; \begin{cases} u_2 \quad \text{if} \quad u_1 = \infty \\ u_1 \quad \text{otherwise} \end{cases}$$

→ is not commutative !!!

356

... for Interval Analysis:

We preserve finite interval bounds :-)

Therefore,
$$\bot \sqcap D = D\sqcap \bot = \bot \quad \text{and for} \quad D_1 \neq \bot \neq D_2 \text{:}$$

$$(D_1\sqcap D_2)\,x \ = \ (D_1\,x)\sqcap (D_2\,x) \quad \text{ where}$$

$$[l_1,u_1]\sqcap [l_2,u_2] \ = \ [l,u] \quad \text{ with}$$

$$l \ = \ \begin{cases} l_2 \quad \text{if} \quad l_1 = -\infty \\ l_1 \quad \text{otherwise} \end{cases}$$

$$u \ = \ \begin{cases} u_2 \quad \text{if} \quad u_1 = \infty \\ u_1 \quad \text{otherwise} \end{cases}$$

□ is not commutative!!!

Accelerated Narrowing in the Example:

u

u

 $+\infty$

41

41

41

41

42

42

42

Discussion:

- Caveat: Widening also returns for non-monotonic f_i a solution Narrowing is only applicable to monotonic f_i !!
- In the example, accelerated narrowing already returns the optimal result :-)
- If the operator \Box only allows for finitely many improvements of values, we may execute narrowing until stabilization.
- In case of interval analysis these are at most:

$$\#points \cdot (1 + 2 \cdot \#Vars)$$

1.6 Pointer Analysis

Questions:

- Are two addresses possibly equal?
- Are two addresses definitively equal?

1.6 Pointer Analysis

Questions:

→ Are two addresses possibly equal?

May Alias

→ Are two addresses definitively equal?

Must Alias

→ Alias Analysis

360

(2) Values of Variables:

- ullet Extend the set Expr of expressions by occurring loads M[e] .
- Extend the Effects of Edges:

$$\begin{bmatrix} x = M[e]; \end{bmatrix}^{\sharp} V e' = \begin{cases} \{x\} & \text{if } e' = M[e] \\ \emptyset & \text{if } e' = e \\ V e' \backslash \{x\} & \text{otherwise} \end{cases}$$

$$\begin{bmatrix} M[e_1] = e_2; \end{bmatrix}^{\sharp} V e' = \begin{cases} \emptyset & \text{if } e' \in \{e_1, e_2\} \\ V e' & \text{otherwise} \end{cases}$$

The analyses so far without alias information:

- (1) Available Expressions:
- Extend the set Expr of expressions by occurring loads M[e].
- Extend the Effects of Edges:

$$\begin{split} & [\![x=e;]\!]^{\sharp} \, A & = (A \cup \{e\}) \backslash Expr_x \\ & [\![x=M[e];]\!]^{\sharp} \, A & = (A \cup \{e,M[e]\}) \backslash Expr_x \\ & [\![M[e_1]=e_2;]\!]^{\sharp} \, A & = (A \cup \{e_1,e_2\}) \backslash Loads \end{split}$$

361

- (3) Constant Propagation:
- Extend the abstract state by an abstract store M
- Execute accesses to known memory locations!

$$\llbracket x = M[e]; \rrbracket^{\sharp}(D, M) = \begin{cases} (D \oplus \{x \mapsto M \, a\}, M) & \text{if} \\ & \llbracket e \rrbracket^{\sharp} \, D = a \, \sqsubset \, \top \\ (D \oplus \{x \mapsto \top\}, M) & \text{otherwise} \end{cases}$$

$$\begin{cases} (D, M \oplus \{a \mapsto \llbracket e_2 \rrbracket^{\sharp} D\}) & \text{if} \\ & \llbracket e_1 \rrbracket^{\sharp} \, D = a \, \sqsubset \, \top \\ (D, \bot) & \text{otherwise} \end{cases}$$

$$(D, \bot) & \text{otherwise} \quad \text{where}$$

$$\bot a = \top \quad (a \in \mathbb{N})$$

(3) Constant Propagation:

- Extend the abstract state by an abstract store M
- Execute accesses to known memory locations!

$$\llbracket x = M[e]; \rrbracket^{\sharp}(D, M) = \begin{cases} (D \oplus \{x \mapsto M \, a\}, M) & \text{if} \\ & \llbracket e \rrbracket^{\sharp} \, D = a \, \sqsubset \, \top \\ (D \oplus \{x \mapsto \top\}, M) & \text{otherwise} \end{cases}$$

$$[M[e_1] = e_2; \rrbracket^{\sharp}(D, M) = \begin{cases} (D, M \oplus \{a \mapsto \llbracket e_2 \rrbracket^{\sharp} D\}) & \text{if} \\ & \llbracket e_1 \rrbracket^{\sharp} \, D = a \, \sqsubset \, \top \\ (D, \bot) & \text{otherwise} \end{cases}$$

$$(D, \bot) & \text{otherwise} \quad \text{where}$$

$$\bot a = \top \qquad (a \in \mathbb{N})$$