Script generated by TTT Title: Seidl: Programmoptimierung (29.10.2012) Mon Oct 29 15:00:39 CET 2012 Date: Duration: 89:32 min Pages: 58 - 2. \mathbb{Z} with the relation "=": - • (-2) (-1) (0) (1) (2) • • 3. \mathbb{Z} with the relation " \leq ": 4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering: ### Background 2: Complete Lattices A set \mathbb{D} together with a relation $\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for \bigvee all $a, b, c \in \mathbb{D}$, $$\begin{array}{ll} a \sqsubseteq a & reflexivity \\ a \sqsubseteq b \wedge b \sqsubseteq a \implies a = b & anti-symmetry \\ a \sqsubseteq b \wedge b \sqsubseteq c \implies a \sqsubseteq c & transitivity \end{array}$$ # Examples: 1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation " \subseteq ": ### Background 2: Complete Lattices A set $\mathbb D$ together with a relation $\ \sqsubseteq \subseteq \mathbb D \times \mathbb D$ is a partial order if for all $a, b, c \in \mathbb{D}$, $$\begin{array}{ll} a\sqsubseteq a & reflexivity \\ a\sqsubseteq b\wedge b\sqsubseteq a \implies a=b & anti-symmetry \\ a\sqsubseteq b\wedge b\sqsubseteq c \implies a\sqsubseteq c & transitivity \end{array}$$ # Examples: 1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation " \subseteq ": 2. \mathbb{Z} with the relation "=": 3. \mathbb{Z} with the relation " \leq ": 4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering: $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if $$x \sqsubseteq d$$ for all $x \in X$ 71 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if $x \sqsubseteq d$ for all $x \in X$ d is called least upper bound (lub) if - 1. d is an upper bound and - 2. $d \sqsubseteq y$ for every upper bound y of X. $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if $$x \sqsubseteq d \qquad \text{ for all } x \in X$$ d is called least upper bound (lub) if - 1. d is an upper bound and - 2. $d \sqsubseteq y$ for every upper bound y of X. Caveat: - $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound! - $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\ldots$ $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if $$x \sqsubseteq d$$ for all $x \in X$ d is called least upper bound (lub) if - 1. d is an upper bound and - 2. $d \sqsubseteq y$ for every upper bound y of X. Caveat: - $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound! - $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\ldots$ 73 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if $$x \sqsubseteq d$$ for all $x \in X$ d is called least upper bound (lub) if - $1. \ d$ is an upper bound and - 2. $d \sqsubseteq y$ for every upper bound y of X. Caveat: - $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound! - $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\dots$ A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D}$ has a least upper bound $| | X \in \mathbb{D}$. Note: Every complete lattice has - \rightarrow a least element $\perp = \sqcup \emptyset \in \mathbb{D}$; - \rightarrow a greatest element $T = \coprod \mathbb{D} \in \mathbb{D}$. 74 A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X\subseteq\mathbb{D}$ has a least upper bound $\mid \mid X\in\mathbb{D}$. Note: Every complete lattice has \rightarrow a greatest element $T = \coprod \mathbb{D} \in \mathbb{D}$. 73 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if $$x \sqsubseteq d$$ for all $x \in X$ d is called least upper bound (lub) if - 1. d is an upper bound and - 2. $d \sqsubseteq y$ for every upper bound y of X. ### Caveat: - $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound! - $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\ldots$ 2. \mathbb{Z} with the relation "=": 3. \mathbb{Z} with the relation " \leq ": 4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering: # Examples: 1. $$\mathbb{D} = 2^{\{a,b,c\}}$$ is a cl :-) 2. $$\mathbb{D} = \mathbb{Z}$$ with "=" is not. 3. $$\mathbb{D} = \mathbb{Z}$$ with " \leq " is neither. 4. $$\mathbb{D} = \mathbb{Z}_{\perp}$$ is also not :-(5. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top} = \mathbb{Z} \cup \{\bot, \top\}$: $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if $$x \sqsubseteq d$$ for all $x \in X$ d is called least upper bound (lub) if - 1. d is an upper bound and - 2. $d \sqsubseteq y$ for every upper bound y of X. $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if $$x \sqsubseteq d$$ for all $x \in X$ 71 We have: ### Theorem: If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$. 76 We have: ### Theorem: If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$. ### Proof: Construct $$U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}.$$ // the set of all lower bounds of X :-) We have: ### Theorem: If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$. ### Proof: Construct $$U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}.$$ // the set of all lower bounds of X :-) Set: $$g:=\bigsqcup U$$ Claim: $g = \prod X$ 77 ### (1) g is a lower bound of X: Assume $x \in X$. Then: $u \sqsubseteq x \text{ for all } u \in U$ \implies x is an upper bound of U $\implies g \sqsubseteq x : -)$ 79 (1) g is a lower bound of X: Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ \implies x is an upper bound of U \implies $g \sqsubseteq x$:-) (2) g is the greatest lower bound of X: Assume u is a lower bound of X. Then: $u \in U$ \Longrightarrow $u \sqsubseteq g$:-)) 80 We are looking for solutions for systems of constraints of the form: $$x_i \supseteq f_i(x_1,\ldots,x_n)$$ (*) where: | x_i | unknown | here: | $\mathcal{A}[u]$ | |--|-------------------|-------|------------------| | \mathbb{D} | values | here: | 2^{Expr} | | \sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$ | ordering relation | here: | ⊇ | | $f_i \colon \mathbb{D}^n o \mathbb{D}$ | constraint | here: | | 81 We are looking for solutions for systems of constraints of the form: $$x_i \supseteq f_i(x_1, \dots, x_n)$$ (*) where: $$x_i$$ unknown here: $\mathcal{A}[u]$ \mathbb{D} values here: 2^{Expr} $\mathbb{C} \subseteq \mathbb{D} \times \mathbb{D}$ ordering relation here: \supseteq $f_i \colon \mathbb{D}^n \to \mathbb{D}$ constraint here: ... Constraint for A[v] $(v \neq start)$: $$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ edge} \}$$ A mapping $f:\mathbb{D}_1\to\mathbb{D}_2$ is called monotonic, if $f(a)\sqsubseteq f(b)$ for all $a\sqsubseteq b$. We are looking for solutions for systems of constraints of the form: $$x_i \supseteq f_i(x_1, \dots, x_n)$$ (*) where: | x_i | unknown | here: | $\mathcal{A}[u]$ | |--|-------------------|-------|------------------| | \mathbb{D} | values | here: | 2^{Expr} | | \sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$ | ordering relation | here: | \supseteq | | $f_i : \mathbb{D}^n o \mathbb{D}$ | constraint | here: | | Constraint for A[v] $(v \neq start)$: $$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ edge} \}$$ Because: $$x \supseteq d_1 \land \ldots \land x \supseteq d_k \quad \text{iff} \quad x \supseteq \bigsqcup \{d_1, \ldots, d_k\} \qquad :-)$$ 87 A mapping $f:\mathbb{D}_1\to\mathbb{D}_2$ is called monotonic, is $f(a)\sqsubseteq f(b)$ for all $a\sqsubseteq b$. Examples: - (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f \, x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-) - (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then: - inc x = x + 1 is monotonic. - $\operatorname{dec} x = x 1$ is monotonic. A mapping $f:\mathbb{D}_1\to\mathbb{D}_2$ is called monotonic, is $f(a)\sqsubseteq f(b)$ for all $a\sqsubseteq b$. # Examples: - (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-) - (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then: - inc x = x + 1 is monotonic. - $\operatorname{dec} x = x 1$ is monotonic. - inv x = -x is not monotonic :-) 91 # Theorem: If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-) A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$. ### Examples: - (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-) - (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then: - inc x = x + 1 is monotonic. - $\operatorname{dec} x = x 1$ is monotonic. - inv x = -x is not monotonic :-) 91 ### Theorem: If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-) ### Theorem: If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where $$f \sqsubseteq g$$ iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$ 92 ### Theorem: If $$f_1: \mathbb{D}_1 \to \mathbb{D}_2$$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-) ### Theorem: If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where $$f \sqsubseteq g$$ iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$ In particular for $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2]$, $$| F = f \text{ mit } fx = | \{gx \mid g \in F\}$$ 94 For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \sqcup " and " \sqcap " can be explicitly defined by: $$(f_2 \circ f_1) x = \underbrace{a_1 \cap a_2} \cap x \cup \underbrace{a_2 \cap b_1 \cup b_2}$$ $$(f_1 \sqcup f_2) x = \underbrace{(a_1 \cup a_2)} \cap x \cup \underbrace{b_1 \cup b_2}$$ $$(f_1 \sqcap f_2) x = \underbrace{(a_1 \cup b_1) \cap (a_2 \cup b_2)} \cap x \cup \underbrace{b_1 \cap b_2}$$ For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \sqcup " and " \sqcap " can be explicitly defined by: $$(f_2 \circ f_1) x = a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2$$ $$(f_1 \sqcup f_2) x = (a_1 \cup a_2) \cap x \cup b_1 \cup b_2$$ $$(f_1 \sqcap f_2) x = (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2$$ 95 Wanted: minimally small solution for: $$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$ (*) where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic. 95 Wanted: minimally small solution for: $$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$ (*) where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic. Idea: • Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $$F(x_1, ..., x_n) = (y_1, ..., y_n)$$ with $y_i = f_i(x_1, ..., x_n)$. 97 Wanted: minimally small solution for: $$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$ (*) where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic. Idea: • Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $$F(x_1, ..., x_n) = (y_1, ..., y_n)$$ with $y_i = f_i(x_1, ..., x_n)$. • If all f_i are monotonic, then also F:-) (1,2,3,1) = (3,2,3,15) Wanted: minimally small solution for: $$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$ where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic. Idea: • Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $$F(x_1, ..., x_n) = (y_1, ..., y_n)$$ with $y_i = f_i(x_1, ..., x_n)$. • If all f_i are monotonic, then also F:-) Wanted: minimally small solution for: $$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$ (*) where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic. Idea: • Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $$F(x_1, ..., x_n) = (y_1, ..., y_n)$$ with $y_i = f_i(x_1, ..., x_n)$. - If all f_i are monotonic, then also F:-) - We successively approximate a solution. We construct: $$\perp$$, $F \perp$, $F^2 \perp$, $F^3 \perp$, ... Hope: We eventually reach a solution ... ??? Wanted: minimally small solution for: $$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$ (*) where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic. Idea: • Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $$F(x_1, ..., x_n) = (y_1, ..., y_n)$$ with $y_i = f_i(x_1, ..., x_n)$. • If all f_i are monotonic, then also F:-) Idea: Wanted: - $x_i \supseteq f_i(x_1,\ldots,x_n), \quad i=1,\ldots,n$ (*) - where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic. minimally small solution for: • Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $$F(x_1, ..., x_n) = (y_1, ..., y_n)$$ with $y_i = f_i(x_1, ..., x_n)$. - If all f_i are monotonic, then also F:- - We successively approximate a solution. We construct: $$\underline{\perp}$$, $F\underline{\perp}$, $F^2\underline{\perp}$, $F^3\underline{\perp}$, ... Hope: We eventually reach a solution ... ??? Example: $\mathbb{D} = 2^{\{a,b,c\}}, \quad \Box = \Box$ $$x_1 \supseteq \{a\} \cup x_3$$ $$x_2 \supseteq x_3 \cap \{a, b\}$$ $$x_3 \supseteq x_1 \cup \{c\}$$ Example: $$\mathbb{D}=2^{\{\mathbf{a},\mathbf{b},\mathbf{c}\}},\quad \sqsubseteq=\subseteq$$ $$x_1 \supseteq \{a\} \cup x_3$$ $$x_2 \supseteq \{a\} \cap \{a,b\}$$ $$x_3 \supseteq \{b\} \cup \{c\}$$ $$x_2 \supseteq \mathcal{J}_3 \cap \{a, b\}$$ $$x_3 \supseteq \mathcal{B} \cup \{c$$ The Iteration: | | 0 | 1 | 2 | 3 | 4 | |-------|---|---|---|---|---| | x_1 | Ø | a | | | | | x_2 | Ø | 0 | | | | | x_3 | Ø | خ | | | | Example: $$\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$$ $$x_1 \supseteq \{a\} \cup x_3$$ $$x_2 \supseteq \mathbf{C} \cap \{a, b\}$$ $$x_3 \supseteq \mathbf{a}_1 \cup \{\mathbf{c}\}$$ ### The Iteration: | | 0 | 1 | 2 | 3 | 4 | |-------|---|--------------|-----------|---|---| | x_1 | Ø | { a } | K,C | | | | x_2 | Ø | Ø | φ | | | | x_3 | Ø | $\{c\}$ | 90 | | | | | | | | | | 102 Example: $$\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$$ $$x_1 \supseteq \{a\} \cup x_3$$ $$x_2 \supseteq x_3 \cap \{ a, b \}$$ $$x_3 \supseteq x_1 \cup \{c\}$$ ### The Iteration: # Example: $$\mathbb{D} = 2^{\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}}, \quad \sqsubseteq = \subseteq$$ $$x_1 \supseteq \{a\} \cup x_3$$ $$x_2 \supseteq x_3 \cap \{a, b\}$$ $$x_3 \supseteq x_1 \cup \{c\}$$ ### The Iteration: | | 0 | 1 | 2 | 3 | 4 | |-------|---|--------------|-----------|--------------|---| | x_1 | Ø | { a } | $\{a,c\}$ | $\{a,c\}$ | | | x_2 | Ø | Ø | Ø | { a } | | | x_3 | Ø | $\{c\}$ | $\{a,c\}$ | $\{a,c\}$ | | 104 # Example: $$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$ $$x_1 \supseteq \{\mathbf{a}\} \cup x_3$$ $$x_2 \supseteq x_3 \cap \{a, b\}$$ $$x_3 \supseteq x_1 \cup \{c\}$$ ### The Iteration: | | 0 | 1 | 2 | 3 | 4 | |-------|---|--------------|-----------|--------------|------| | x_1 | Ø | { a } | $\{a,c\}$ | $\{a,c\}$ | dito | | x_2 | Ø | Ø | Ø | { a } | | | x_3 | Ø | $\{c\}$ | $\{a,c\}$ | $\{a,c\}$ | | ### Theorem • $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain : $$\underline{\perp} \quad \sqsubseteq \quad F \underline{\perp} \quad \sqsubseteq \quad F^2 \underline{\perp} \quad \sqsubseteq \quad \dots$$ - If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one - If all ascending chains are finite, such a k always exists. 100 Example: $\mathbb{D} = 2^{\{a,b,c\}}, \subseteq \subseteq \subseteq$ $$x_1 \supseteq \{\mathbf{a}\} \cup x_3$$ $$x_2 \supseteq x_3 \cap \{a, b\}$$ $$x_3 \supseteq x_1 \cup \{c\}$$ The Iteration: | | 0 | 1 | 2 | 3 | 4 | |-------|---|--------------|-----------|--------------|------| | x_1 | Ø | { <i>a</i> } | $\{a,c\}$ | $\{a,c\}$ | dito | | x_2 | Ø | Ø | Ø | { a } | | | x_3 | Ø | $\{c\}$ | $\{a,c\}$ | $\{a,c\}$ | | 105 ### Theorem • $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain : $$\underline{\bot} \sqsubseteq F\underline{\bot} \sqsubseteq F^2\underline{\bot} \sqsubseteq \dots$$ - If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-) - If all ascending chains are finite, such a k always exists. ### Proof The first claim follows by complete induction: **Foundation:** $F^0 \perp = \downarrow \sqsubseteq F^1 \perp :$ 4=0 Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$ since F monotonic :-) ### Theorem • $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain : $$\perp \sqsubseteq F \perp \sqsubseteq F^2 \perp \sqsubseteq \dots$$ - If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one - If all ascending chains are finite, such a k always exists. ### Proof The first claim follows by complete induction: **Foundation:** $F^0 \perp = \perp \sqsubseteq F^1 \perp :$ 107 ### Theorem • $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain : $$\bot \sqsubseteq F\bot \sqsubseteq F^2\bot \sqsubseteq \dots$$ - If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-) - If all ascending chains are finite, such a k always exists. ### Proof The first claim follows by complete induction: **Foundation:** $F^0 \perp = \perp \sqsubseteq F^1 \perp :$ 107 Step: Assume $$F^{i-1} \perp \sqsubseteq F^i \perp$$. Then $$F^i \perp = F\left(F^{i-1} \perp\right) \sqsubseteq F\left(F^i \perp\right) = F^{i+1} \perp$$ since F monotonic :-) ### Conclusion: If \mathbb{D} is finite, a solution can be found which is definitely the least :-) ## Question: What, if $$\mathbb{D}$$ is not finite ???? # Theorem # Knaster – Tarski Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$. Let $$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$ Then $$d_0 = \prod P$$. ### Theorem # Knaster – Tarski Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$. Let $$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$ Then $$d_0 = \prod P$$. 110 110 Bronisław Knaster (1893-1980), topology