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1. D = 2{®2<} with the relation *C” :

Background 2: Complete Lattices

2. Zwith the relation "=" :
A set D together with arelation C C I x D  is a partial order if for
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3. Z with the relation “<”
et aCa reflexivity
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[ 1. D= 2{=bek with the relation “C” : —
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2. Z with the relation "=":

3. Z with the relation *

n
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4. Z, =Z\J {1} with the ordering:
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d € D is called upper bound for X C D if

zCd forallz € X

N

d € D is called upper bound for X C D if

rCd forallz e X

d is called least upper bound (lub) if
1. dis an upper bound and

2. d C y for every upper bound y of X.

d € D is called upper bound for X C D if

rCd forallz e X

d is called least upper bound (lub) if
1. d is an upper hound and

2. d C y for every upper bound y of X.

Caveat:
e {0,2,4,...} C Z has no upper bound!

e {0.2,4} C Z has the upper bounds 4, 5.6, . ..




d € D is called upper bound for X C I if

zCd forallz € X
A complete lattice (c]) D is a partial ordering where every subset
d is called least upper bound (lub) if X CD hasaleastupperbound | |X €D
1. d is an upper bound and
2. d C y for every upper bound y of X. Note:
Caveat: Every complete lattice has
— aleastelement | = |0 ey

{0,2,4,...} € Z has no upper bound!
— agreatestelement T =||D <.

{0,2,4} C Z has the upper bounds 4, 5,6, . ..
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d € D is called upper bound for X C D if

rCd forallz e X

A complete lattice (cl) D is a partial ordering where every subset
X CD hasaleastupperbound | |X €D

T T

d is called least upper bound (lub) if

1. dis an upper bound and

2. d C y for every upper bound y of X. Note: P

Caveat: Every complete lattice has [

e {0,2,4,...} C Z has no upper bound! —  aleastelement L =[]0 €D

e {0,2,4) C Z has the upper bounds 4, 5,6, . . . —+ agreatestelement T =|[D €D




d € D is called upper bound for X C I if

zCd forallz € X

d is called least upper bound (lub) if
1. d is an upper bound and

2. d C y for every upper bound y of X.

Caveat:
o {0,2,4,...} € Z has no upper bound!

e {0,2,4} C Z has the upper bounds 4, 5,6, ...

2. Z with the relation "=":

3. Z with the relation *

I

[xX)

4. Z, = Z U {1} with the ordering:

N OO OEONOEE

Examples:

. D=2 jsacl o)

2. = Z with "=" is not.

3. D = Z with “<” is neither.

4. D=7, isalsonot :-(

5. With an extra element T, we obtain the flat lattice

ZT=ZU{Ll,T}

d € D is called upper bound for X C D if

rCd forallz e X

d is called least upper bound (lub) if
1. d is an upper hound and

2. d C y for every upper bound y of X.
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d € D is called upper bound for X C I if

zCd forallz € X

We have:

Theorem:
If D isacomplete lattice, then every subset X C I has a greatest
lower bound []X.
OC> ’
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We have: We have:

Theorem: Theorem:

If D isacomplete lattice, then every subset X C ) has a greatest If D isacomplete lattice, then every subset X C[J has a greatest

lower bound []X. lower bound []X.

Proof: Proof;

Construct U={ueD|YzxeX: ulz}. Construct U={ueD|¥YzeX: vl z}.

// the set of all lower bounds of X :-) // the set of all lower bounds of X :-)

Set:

Claim:

g:=U
g=[1X




(1)  gisalower bound of X : (1) g isalower bound of X :

Assume z € X. Then: Assume x € X. Then:
uCaforalucU ulCxforallueU
——  zis an upper bound of I/ ——  xis an upper bound of U/
£ gLl x -) — gLl x -)

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:
iU e U

— ulgyg )
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We are looking for solutions for systems of constraints of the form:
x;, d file, .., x) ()
where:
T unknown here:  Alu]
D values here:  257r
f/ \.‘ C C DxD | ordering relation here: D
I \
[ ‘ - .
‘\ /f fiD"—=D constraint here:
81
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We are looking for solutions for systems of constraints of the form:

o 3 filzy, .o xm) (%)
where:
z; unknown here:  Alu]
D values here: 2Ezr

C C DxD | ordering relation here: 2

foD =D constraint here:

Constraint for  A[v] (0% start):

Al © ({IFF (AW | k= (u, ,v) edge}

AGd < YA &«fo\
U ‘{m}’(’( (_‘—(zl

We are looking for solutions for systems of constraints of the form:

x; 4 f?(‘E:I: ----- Tn) (*)
where:
x; unknown here:  A[u]
D values here: 2%zt

C C DxD | ordering relation here: O

fiD® — D constraint here:

Constraint for  Afv] (v # start):
Afo] C ﬂ{[[ﬁ]]u (Alu]) | k= (u, ,v) edge}
Because:

e ddyA oAz Dd, it x 2| {di, ..., di} =)

A mapping f:I; — Dy s called monotonic, if  f(a) C f(b) for
all aC b
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A mapping f:D; — Dy is called monotonic, is  f(a) C f(b) for
all aC b

Examples:

(1) Dy =Dy,=2" forasetUand fz=(zNa)uUb.
Obviously, every such f is monotonic  :-)

(2) Dy = Dy = Z (with the ordering “<"). Then:

o incx=x+ 1 is monotonic.

e decz=x—1 ismonotonic.

90




A mapping f:D; — Dy iscalled monotonic, is  f(a) C f(b) for
all aC b

Examples:

(1) Dy=D,=2" forasetUand fx=(xNa)Ub
Obviously, every such f is monotonic = :-)

(2) Dy =Dy = 7Z (with the ordering “<"). Then:

e incx=x+1 ismonotonic.

e decr=x—1 ismonotonic.

e invz = —z isnot monotonic :-
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A mapping f:D; — Dy is called monotonic, is  f(a) C f(b) for
all aC b

Examples:

(1) Dy=D;=2" forasetUand fz=(xNa)Ub
Obviously, every such f is monotonic  :-)

(2) Dy =Dy = Z (with the ordering “<"). Then:

e incx=x+1 ismonotonic.

e decx=x—1 ismonotonic.

. invz = —x is not monotonic :-
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Theorem:

If fi:Dy—Dy; and f5:Ds — D3 are monotonic, then also
facfi Dy — Dy =)

Theorem:

If fi:Dy—D; and f5:Ds — D3 are monotonic, then also
fao fi:Dy — Dy )

Theorem:

If D, isacomplete lattice, then the set [} — Dy]  of monotonic
functions f:D; — Dy is also a complete lattice where

fCg iff fazCga forallz el
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Theorem:

If fi:Dy—Dy and f3:Dy — D3 are monotonic, then also
Jao fi:Dy — Dy )

For functions  f; z = a; Nz U by, the operations  “o”, “LU" and “N”
Theorem: can be explicitly defined by:

If D, isacomplete lattice, then the set [D; — Dy] of monotonic
functions f:D; — Dy is also a complete lattice where

(faofi)x = JaiNay|NazUjasNb Ubs

fLg iff fzLgz forallzeD, (fil fa = ‘ (ay Uas) ‘I'—HU‘M Ub |
(f]ﬂfg)l‘ = ‘ fil‘.]bl N fi)‘_lh)) mI’U‘7“—lbz|
In particular for  F' C [D; — Dy,
| |F=f mit fo=||{gzlgecF}
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Wanted: minimally small solution for:
i 3 filzr, .. xm), i=1,..., n (%)

where all  f; : D™ — D are monotonic.
For functions  f; @ = a; N Ub;, the operations  “o”, "U" and “11"
can be explicitly defined by:

(faofi)z = |aiMazyNxzU|azMb Uby

(fiu fo)z H(ay U as) ‘ﬁ.er by U by Q——-—
(i fy)a

(a; Uby) N (ay Uby)

ﬂI.U|hl ﬂbz‘




Wanted: minimally small solution for: Wanted:; minimally small solution for:

x; 3 filzy, ... rn), i=1,..., n (%) x; 3 filzy, ... rn), i=1,...,n (%)
where all  f; : D" — D are monotonic. where all  f; : D" — [ are monotonic.
Idea: Idea:
e Consider F:D"— D" where e Consider F:D"™— D" where

Flzy,...,q tn) = (Y1, - - yn) with y; = fi(z,... ¢ Tn ). Flxy, ..o an) = (y1, - - - yn)  With g = fi(x, .. x,).

e Ifall f; aremonotonic, thenalso F :)
4 P
(Y03 0) C (3,03 5)
r\/J /
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Wanted: minimally small solution for: Wanted: minimally small solution for:

x D filen,. . o,), i=1...., n () x 3 filan, .. o a), i=1,..., n ()
where all  f; : D™ — 1D are monotonic. where all  f; : D™ — D are monotonic.
Idea: Idea:
o Consider F:D" — D" where e Consider F:D"— D" where

Flzy,...,z,) = (v, ..., yn) with 3 = fi(zy, ..., 2,). Flay, ... x) = (1, ..., ) With ;= fi(zy, ..., 2,).

e Ifall [, are monotonic, thenalso F :-)

KIS+ X

e [Ifall f; are monotonic, thenalso F :-)

e We successively approximate a solution. We construct:

Ll F.l, F?*1, F°1,

Hope: We eventually reach a solution ... ?7?
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Wanted: minimally small solution for: Wanted:; minimally small solution for:

x; 3 filzy, ... rn). t=1,.... n (%) x; 3 filzy, ... rn), i=1,..., n (%)
where all  f; : D" — D are monotonic. where all  f; : D" — [ are monotonic.
Idea: Idea:
e Consider F:D"— D" where e Consider F:D"™— D" where
Flzy,...,: tn) = (Y1, - - yn) with oy = fi(zq,. .., Tn ). Flxy, ..o an) = (y1, - - - yn)  With g = fi(x, .. x,).
e Ifall f; aremonotonic, thenalso F' :) e Ifall f; aremonotonic, thenalso F :)

e We successively approximate a solution. We construct:

Y Ty LoFL oL Py

Hope:  We eventually reach a solution ... ?7?
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Example: D =2fehel C=C Example: D =2fwbel C=C
z; 2 {a} Uz, x; 2 {a} U;TP-
zy 2 z3n{a,b} z3 D ;i;m{u_h}
€T3 2 .ELU{[‘} I3 2 ﬁu{(}

The Iteration:
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Example: D =2lubel C=C Example: D =2labe C=C
z; 2 {a} U.r%—“ r; 2 {a}Uxs
z9 2 £HN{ab} To 2 myM{a,b}
T3 2 %U{(} I3 2 €T U ('}
The Iteration: The Iteration:
HOENEREREY BOENRRENA
A
zy || 0] {a} < zy || O] {a} | {a, ¢} 1;
Ty 0| P ;1-2 (I
73 {c} | ] = 3 {c} | {a,c} [\ <
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Example: D =2fehel C=C Example: D =2fwbel C=C
Ty 2 {fi} U.Tg Iy 2 {H’} ULT:;
z9 2 axzN{a,b} r2 2 x3Ni{a,b}
3 2 x U{c} 3 2 xU{c}
The Iteration: The Iteration:
HOENENERED BOEEREREN
— <
x| 0| {a} | {a,c}|{a,c} xy || 0] {a} | {a,c} | {a,c} |dito
Lo @ @ {ﬂ} o @ @ {H}
T3 {c} [{a, e} | {a,c} 3 {c} | {a,¢} | {a,c}
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Theorem

e | F1 F?1, .. formanascending chain :
1L C FL C F°L C
e If FF1=Ff11, asolutionisobtained which is the least one
)

e Ifall ascending chains are finite, sucha £ always exists.

Example: D =2lebed C=C
I D) {f?} U I3
To 2 myM{a,b}

The Iteration:

BENERENEY
zy || 0] {a} | {a, ¢} | {a,c} | dito
Ty 'B 'B {fi}
3 {c} | {a,¢c} | {a,c}
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Theorem Step: Assume [ 1 C FEL,/Th-eD
T
‘ F"L:F(F27I£)_7_F(FE£):F171£
e | . F1 F?1, . .. formanascending chain :

L C FL C F°L C

e If FF1 =F1"1  asolutionisobtained which is the least one
=)

e Ifall ascending chains are finite, sucha % always exists.

Proof
The first claim follows by complete induction:

Foundation: F' 1L =N C F'1 1)

107
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Theorem

o LFLIFL

1L C FL C F'L C

o If FF1l=Fk
)

e Ifall ascending chains are finite, sucha %

Proof

The first claim follows by complete induction:

Foundation: F° 1 =1 C F'1 )
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form an ascending chain :

a solution is obtained which is the least one

Theorem

e LFLI*L

L C FL C F°L C

o If FFl=F!
=)

e Ifall ascending chains are finite, sucha %

Proof

The first claim follows by complete induction:

Foundation: F°1 =1C F'1 :)
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form an ascending chain :

a solution is obtained which is the least one

Step: Assume F'~

FI

'] C F'l. Then

L=F{FT"LHLCF(FL)=

since ' monotonic  :-)

Conclusion:

If D isfinite, a solution can be found which is definitely the least

Question:

What, if D

is not finite ?7?

Flil;

)




Theorem Knaster — Tarski

Assume D is a complete lattice. Then every monotonic function
f:D— D hasaleast fixpoint do € I.

Let P={deD| fdCd}.

Then do=[]P
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Theorem Knaster — Tarski

Assume [ isa complete lattice. Then every monotonic function
f:D— D hasaleast fixpoint dy € .

Let P={deD|fdCd}.

Then do=[]P
w2 P X
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