Script generated by TTT

Title: Seidl: Programmoptimierung (29.10.2012)

Mon Oct 29 15:00:39 CET 2012 Date:

Duration: 89:32 min

Pages: 58

- 2. \mathbb{Z} with the relation "=":
 - • (-2) (-1) (0) (1) (2) • •

3. \mathbb{Z} with the relation " \leq ":

4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering:

Background 2: Complete Lattices

A set \mathbb{D} together with a relation $\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for \bigvee all $a, b, c \in \mathbb{D}$,

$$\begin{array}{ll} a \sqsubseteq a & reflexivity \\ a \sqsubseteq b \wedge b \sqsubseteq a \implies a = b & anti-symmetry \\ a \sqsubseteq b \wedge b \sqsubseteq c \implies a \sqsubseteq c & transitivity \end{array}$$

Examples:

1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation " \subseteq ":

Background 2: Complete Lattices

A set $\mathbb D$ together with a relation $\ \sqsubseteq \subseteq \mathbb D \times \mathbb D$ is a partial order if for all $a, b, c \in \mathbb{D}$,

$$\begin{array}{ll} a\sqsubseteq a & reflexivity \\ a\sqsubseteq b\wedge b\sqsubseteq a \implies a=b & anti-symmetry \\ a\sqsubseteq b\wedge b\sqsubseteq c \implies a\sqsubseteq c & transitivity \end{array}$$

Examples:

1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation " \subseteq ":

2. \mathbb{Z} with the relation "=":

3. \mathbb{Z} with the relation " \leq ":

4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering:

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

71

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

 $x \sqsubseteq d$ for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if

$$x \sqsubseteq d \qquad \text{ for all } x \in X$$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\ldots$

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\ldots$

73

 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- $1. \ d$ is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\dots$

A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D}$ has a least upper bound $| | X \in \mathbb{D}$.

Note:

Every complete lattice has

- \rightarrow a least element $\perp = \sqcup \emptyset \in \mathbb{D}$;
- \rightarrow a greatest element $T = \coprod \mathbb{D} \in \mathbb{D}$.

74

A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X\subseteq\mathbb{D}$ has a least upper bound $\mid \mid X\in\mathbb{D}$.

Note:

Every complete lattice has

 \rightarrow a greatest element $T = \coprod \mathbb{D} \in \mathbb{D}$.

73

 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6,\ldots$

2. \mathbb{Z} with the relation "=":

3. \mathbb{Z} with the relation " \leq ":

4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering:

Examples:

1.
$$\mathbb{D} = 2^{\{a,b,c\}}$$
 is a cl :-)

2.
$$\mathbb{D} = \mathbb{Z}$$
 with "=" is not.

3.
$$\mathbb{D} = \mathbb{Z}$$
 with " \leq " is neither.

4.
$$\mathbb{D} = \mathbb{Z}_{\perp}$$
 is also not :-(

5. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top} = \mathbb{Z} \cup \{\bot, \top\}$:

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

 $d\in\mathbb{D}$ is called upper bound for $X\subseteq\mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

71

We have:

Theorem:

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

76

We have:

Theorem:

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

Proof:

Construct
$$U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}.$$
 // the set of all lower bounds of X :-)

We have:

Theorem:

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

Proof:

Construct
$$U=\{u\in\mathbb{D}\mid\forall\,x\in X:\ u\sqsubseteq x\}.$$
 // the set of all lower bounds of X :-) Set:
$$g:=\bigsqcup U$$

Claim: $g = \prod X$

77

(1) g is a lower bound of X:

Assume $x \in X$. Then: $u \sqsubseteq x \text{ for all } u \in U$ \implies x is an upper bound of U

 $\implies g \sqsubseteq x : -)$

79

(1) g is a lower bound of X:

Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ \implies x is an upper bound of U \implies $g \sqsubseteq x$:-)

(2) g is the greatest lower bound of X:

Assume u is a lower bound of X. Then: $u \in U$ \Longrightarrow $u \sqsubseteq g$:-))

80

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

where:

x_i	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	2^{Expr}
\sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$	ordering relation	here:	⊇
$f_i \colon \mathbb{D}^n o \mathbb{D}$	constraint	here:	

81

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

where:

$$x_i$$
 unknown here: $\mathcal{A}[u]$
 \mathbb{D} values here: 2^{Expr}
 $\mathbb{C} \subseteq \mathbb{D} \times \mathbb{D}$ ordering relation here: \supseteq
 $f_i \colon \mathbb{D}^n \to \mathbb{D}$ constraint here: ...

Constraint for A[v] $(v \neq start)$:

$$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ edge} \}$$

A mapping $f:\mathbb{D}_1\to\mathbb{D}_2$ is called monotonic, if $f(a)\sqsubseteq f(b)$ for all $a\sqsubseteq b$.

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

where:

x_i	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	2^{Expr}
\sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i : \mathbb{D}^n o \mathbb{D}$	constraint	here:	

Constraint for A[v] $(v \neq start)$:

$$\mathcal{A}[v] \subseteq \bigcap \{ \llbracket k \rrbracket^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ edge} \}$$

Because:

$$x \supseteq d_1 \land \ldots \land x \supseteq d_k \quad \text{iff} \quad x \supseteq \bigsqcup \{d_1, \ldots, d_k\} \qquad :-)$$

87

A mapping $f:\mathbb{D}_1\to\mathbb{D}_2$ is called monotonic, is $f(a)\sqsubseteq f(b)$ for all $a\sqsubseteq b$.

Examples:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f \, x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-)
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:
 - inc x = x + 1 is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.

A mapping $f:\mathbb{D}_1\to\mathbb{D}_2$ is called monotonic, is $f(a)\sqsubseteq f(b)$ for all $a\sqsubseteq b$.

Examples:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-)
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:
 - inc x = x + 1 is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.
 - inv x = -x is not monotonic :-)

91

Theorem:

If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-)

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-)
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:
 - inc x = x + 1 is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.
 - inv x = -x is not monotonic :-)

91

Theorem:

If $f_1: \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

92

Theorem:

If
$$f_1: \mathbb{D}_1 \to \mathbb{D}_2$$
 and $f_2: \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1: \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

In particular for $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2]$,

$$| F = f \text{ mit } fx = | \{gx \mid g \in F\}$$

94

For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_2 \circ f_1) x = \underbrace{a_1 \cap a_2} \cap x \cup \underbrace{a_2 \cap b_1 \cup b_2}$$

$$(f_1 \sqcup f_2) x = \underbrace{(a_1 \cup a_2)} \cap x \cup \underbrace{b_1 \cup b_2}$$

$$(f_1 \sqcap f_2) x = \underbrace{(a_1 \cup b_1) \cap (a_2 \cup b_2)} \cap x \cup \underbrace{b_1 \cap b_2}$$

For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_2 \circ f_1) x = a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2$$

$$(f_1 \sqcup f_2) x = (a_1 \cup a_2) \cap x \cup b_1 \cup b_2$$

$$(f_1 \sqcap f_2) x = (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2$$

95

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

95

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

97

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

• If all f_i are monotonic, then also F:-)

(1,2,3,1) = (3,2,3,15)

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

• If all f_i are monotonic, then also F:-)

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

- If all f_i are monotonic, then also F:-)
- We successively approximate a solution. We construct:

$$\perp$$
, $F \perp$, $F^2 \perp$, $F^3 \perp$, ...

Hope: We eventually reach a solution ... ???

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

• If all f_i are monotonic, then also F:-)

Idea:

Wanted:

- $x_i \supseteq f_i(x_1,\ldots,x_n), \quad i=1,\ldots,n$ (*)
- where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

minimally small solution for:

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

- If all f_i are monotonic, then also F:-
- We successively approximate a solution. We construct:

$$\underline{\perp}$$
, $F\underline{\perp}$, $F^2\underline{\perp}$, $F^3\underline{\perp}$, ...

Hope: We eventually reach a solution ... ???

Example: $\mathbb{D} = 2^{\{a,b,c\}}, \quad \Box = \Box$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

Example:

$$\mathbb{D}=2^{\{\mathbf{a},\mathbf{b},\mathbf{c}\}},\quad \sqsubseteq=\subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq \{a\} \cap \{a,b\}$$

$$x_3 \supseteq \{b\} \cup \{c\}$$

$$x_2 \supseteq \mathcal{J}_3 \cap \{a, b\}$$

$$x_3 \supseteq \mathcal{B} \cup \{c$$

The Iteration:

	0	1	2	3	4
x_1	Ø	a			
x_2	Ø	0			
x_3	Ø	خ			

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq \mathbf{C} \cap \{a, b\}$$

$$x_3 \supseteq \mathbf{a}_1 \cup \{\mathbf{c}\}$$

The Iteration:

	0	1	2	3	4
x_1	Ø	{ a }	K,C		
x_2	Ø	Ø	φ		
x_3	Ø	$\{c\}$	90		

102

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{ a, b \}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

Example:

$$\mathbb{D} = 2^{\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

	0	1	2	3	4
x_1	Ø	{ a }	$\{a,c\}$	$\{a,c\}$	
x_2	Ø	Ø	Ø	{ a }	
x_3	Ø	$\{c\}$	$\{a,c\}$	$\{a,c\}$	

104

Example:

$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{\mathbf{a}\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

	0	1	2	3	4
x_1	Ø	{ a }	$\{a,c\}$	$\{a,c\}$	dito
x_2	Ø	Ø	Ø	{ a }	
x_3	Ø	$\{c\}$	$\{a,c\}$	$\{a,c\}$	

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain :

$$\underline{\perp} \quad \sqsubseteq \quad F \underline{\perp} \quad \sqsubseteq \quad F^2 \underline{\perp} \quad \sqsubseteq \quad \dots$$

- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one
- If all ascending chains are finite, such a k always exists.

100

Example: $\mathbb{D} = 2^{\{a,b,c\}}, \subseteq \subseteq \subseteq$

$$x_1 \supseteq \{\mathbf{a}\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

	0	1	2	3	4
x_1	Ø	{ <i>a</i> }	$\{a,c\}$	$\{a,c\}$	dito
x_2	Ø	Ø	Ø	{ a }	
x_3	Ø	$\{c\}$	$\{a,c\}$	$\{a,c\}$	

105

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain :

$$\underline{\bot} \sqsubseteq F\underline{\bot} \sqsubseteq F^2\underline{\bot} \sqsubseteq \dots$$

- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation: $F^0 \perp = \downarrow \sqsubseteq F^1 \perp :$

4=0

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$ since F monotonic :-)

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain :

$$\perp \sqsubseteq F \perp \sqsubseteq F^2 \perp \sqsubseteq \dots$$

- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation: $F^0 \perp = \perp \sqsubseteq F^1 \perp :$

107

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain :

$$\bot \sqsubseteq F\bot \sqsubseteq F^2\bot \sqsubseteq \dots$$

- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation: $F^0 \perp = \perp \sqsubseteq F^1 \perp :$

107

Step: Assume
$$F^{i-1} \perp \sqsubseteq F^i \perp$$
. Then
$$F^i \perp = F\left(F^{i-1} \perp\right) \sqsubseteq F\left(F^i \perp\right) = F^{i+1} \perp$$
 since F monotonic :-)

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least :-)

Question:

What, if
$$\mathbb{D}$$
 is not finite ????

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let
$$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$

Then
$$d_0 = \prod P$$
.

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let
$$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$

Then
$$d_0 = \prod P$$
.

110

110

Bronisław Knaster (1893-1980), topology