Script generated by TTT

Title: Seidl: Programmoptimierung (22.10.2012)

Date: Mon Oct 22 14:02:05 CEST 2012

Duration: 90:47 min

Pages: 43

Organization

Dates: Lecture:

Tutorials:

Material:

Monday, 14:00-15:30

Wednesday, 8:30-10:00
Tuesday/Wednesday, 10:00-12:00
Kalmer Apinis: apinis@in.tum.de

slides, recording :-)

Moodle
Program Analysis and Transformation
Springer, 2012

Helmut Seidl

Program Optimization

TU Miinchen
Winter 2012/13

Grades:

e Bonus for homeworks

e written exam

Organization Proposed Content:

1. Avoiding redundant computations
Dates: Lecture: Monday, 14:00-15:30

Wednesday, 8:30-10:00
Tutorials: Tuesday/Wednesday, 10:00-12:00

Kalmer Apinis: apinis@in.tum.de

—» available expressions
— constant propagation/array-bound checks

—» code motion

Material lid i] 2. Replacing expensive with cheaper computations
Material: slides, recording -
(=]

Moodle — peep hole optimization
Program Analysis and Transformation — inlining
Springer, 2012 — reduction of strength

2 4

0 Introduction

. Observati : ilive progr: len are i i
3. Exploiting Hardware Jbservation 1 [ntuitive programs often are inefficient.

— Instruction selection
, ‘ Example:

— Register allocation

— Scheduling

— Memory management

=
=

Inefficiencies:

e Addressesa[i], a[j] are computed three times :-(

e Valuesal[i],al[j] are loaded twice :-(

Improvement:

e Use a pointer to traverse the array a;

e store the values of a [i],a[]]!

void swap (int #p, int =*q)

int t, ai, aj;

ai = *p; aj = *q;
if (ai > aj) |
t aj;
*q = ai;
*p = t; // t can also be
} // eliminated!

void swap (int #p, int =*q) {
int t, ai, aj;
ali = *p; aj = *q;

if (ai > aj) {

t = aj;

*xq = ai;

*p = t; // t can also be
} // eliminated!

void

swap (int »p, int *q) {
int t, ai, aj;

ai = #p; aj = *g;

if (ai > aj) |

t = aj;

xq = ai;

*p = t; // t can also be
} // eliminated!

Inefficiencies:

e Addressesa[i], a[j] are computed three times :-(
e Valuesal[i],al[j] are loaded twice :-(
Improvement:

e Use a pointer to traverse the array a;

e store the values of a [i],a[]]!

Observation 3:

PIO”I amim- 1]1 yrovements need not alw. ays be correct -

Example: j/
£(

+ £0); — v =2 % £();

Idea: Save second evaluation of £ ()

10

Consequences:

Optimizations have assumptions.
The assumption must be:
e formalized,

e checked)

It must be proven that the optimization is correct, i.e., preserves

the semantics !!!

12

Observation 4:

Optimization techniques depend on the programming language:

— which inefficiencies occur;
— how analyzable programs are;

— how difficult/impossible it is to prove correctness ...

Example: Java

13

Observation 3:

Programm-Improvements need not always be correct :-(

Example:
y =0 + £0); — y =2 % £();
Idea: Save the second evaluation of £ () 777
Problem: The second evaluation may return a result different from the

first; (e.g., because £ () reads from the input :-)

void swap (int #p, int =*q)
int t, ai, aj;

alh = *p; aj = *dg .
+ e o (ai’i‘Fgﬁ{ﬁMm

t aj;
*q = ai;
*p = t; // t can also be
} // eliminated!
/I\ }
8

Correctness proofs:

+ more or less well-defined semantics;
— features, features, features:

— libraries with changing behavior ...

Correctness proofs:

+ more or less well-defined semantics;
— features, features, features;

— libraries with changing behavior ...

... in this course:

ir imperative progr i : vith:
a simple imperative programming language with

Note:

o For the beginning, we omit procedures :-)

e Fxternal procedures are taken into account through a statement f() for

// registers an unknown procedure f.

/ assignments —— intra-procedural

// loads —— kind of an intermediate language in which (almost) everything

1/ stores can be translated.

1/ conditional branching

/" no loops) Example: swap ()

16 17
0: Ay Ag+ 1 %4 // Ay == &a
IR MIAL]:) Ri==ali] Optimization 1: 1+R — R
2 : Ay Ap+1x%7; o
. R MIA: J Ry==alj Optimization 2: Reuse of subexpressions
L: if (B > Ra){
5: As = Ay +1xj7; A== A; == A4;
6 : t = M][A;]; Ay == A3 == A,
7 Ay = Ap+1=j;
8: A = Ag+1=1 M[A] == M[A;]
9: Ry = MJ[A;]; M[A;] == M[A;]
10 : M[As] = Ra;
11 : Ag = Ag+1x4; Ry == R,
12 : M[4¢] = &
}

0: A = Ao+ 1x4;

1: R1 = ;’l[[;‘l]]i

2: Ay = Ap+1xj;

3 R2 = J[[flz]
1: if (Rl > RQ} {

AD == &a
R1 == (2[2}

Ry == a[j]

Optimization 1:

Optimization 2:

1+R =— R

Reuse of subexpressions

5 As = Ay +1xg7; Ay == A; == A4
6 t = MJ[A;]; Ay == A3 == A,
7 Ay = Ap+1=j;
8: As = Ay +1xi; M[A,] == M[Aj]
9: Ry = M][A;]; M[A;] == M|[A3]
10 M[As = Ra;
11 : Ag = Ap+1xi; R, == R,
12 : M[Ag] = &
}
18 19
0: Ay Ao+ 1 x1; // Ag == &a
Optimization 1: 1*xR — R R M[AL]: /. Ry==dli]
Obtimizati . ’ 2: A, Ao+ 1=73;
ptimization 2: Reuse of subexpressions 3. R, M[A,): // Ry == alj]
L if (R > Ry) {
A == A5 == A 5 As = Ap+1xj;
Ay == Az == A, 6: t = M][A3];
7 Ay = Ag+1=xj;
M[A,] == M[A;] 8. As = Ap+1#i
M[A;] == M][As] 9: Ry = M[As];
10 : M[A)] = BRs;
Ry == R4 11 : As = Ap+1x*i;
12 : M4 = t;
}
19 18

Inefficiencies:

e Addressesa[i], a[j] are computed three times :-(

e Valuesal[i],al[j] are loaded twice :-(

Improvement:

e Use a pointer to traverse the array a;

e store the values of a [i],a[]]!

Inefficiencies:

e Addressesa[i],a[]j] are computed three times -

e Valuesal[i],al[j] are loaded twice :-(

Improvement:

e Use a pointer to trgferse the array a;

e store the valuesof a[1],a[j]!

Optimization 3: Contraction of chains of assignments
Gain:
before | after
+ 6 2
* 6 0
load 4 2
store 2 2
> 1 1
= 6 2

=)

Optimizatiﬁn 3: Contraction of chains of assignments
Gain:
before | after
+ 6 2
* 6 0
load 4 2
store 2 2
> 1 1
= 6 2
21

1 Removing superfluous computations

1.1 Repeated computations
Idea:

If the same value is computed repeatedly, then
— store it after the first computation;

— replace every further computation through a look-up!

== Availability of expressions

—— Memoization

Problem: Identify repeated computations!

Example:

Note:

B is a repeated computation of the value of [y + z |, if:
(1) Aisalways executed before B; and

(2) y and = at B have the same values as at A :-)

—— We need:

— an operational semantics :-)

— amethod which identifies at least some repeated computations ...

Background 1: An Operational Semantics

we choose a small-step operational approach.
Programs are represented as control-flow graphs.

In the example:

Neg (R1 > Ra) > Pos (R1 > Ra)
N S
(stop)

'{'.n = Ao+ 1+j;

Background 1: An Operational Semantics

we choose a small-step operational approach.
Programs are represented as control-flow graphs.

In the example:

=0
* Ar=Ao+1xi;
¥ -
‘\Y\:‘ Az =Ao+1%7;
‘T} Ry = M[As];

Neg (R1 > Ra)
e

. Pos (R1 > Ra)
D
(stop))

.'_y‘,l:; =Ap+1%j3;

S +/

Thereby, represent:

vertex | program point

start programm start

stop program exit

edge step of computation
26

Thereby, represent:

vertex | program point

start programm start

stop program exit

edge step of computation

Edge Labelings:
Test : Pos () or Neg (e)
Assignment: R =¢;
Load : R = M][e];
Store : Mley] = es;
Nop :
27

Computations follow paths.
Computations transform the current state
s=(p,)

where:

p: Vars — int | contents of registers

po N —int contents of storage

Every edge k = (u, lab, v) defines a partial transformation

[¥] = [lab]

of the state:

[10e. 1) = (p.n) [:1(p,) = (p.p)
[Pos(e)] (p, 1) = (p,p) if[e]p#0 [Pos(e)] (p, 1) = (p,pt) it [e] p#0
[Neg (@] (o) = (p,p0) if[e]p=0 [Neg ()] (p.pr) = (p,) if[e] p=0
/) le] : evaluation of the expression e, e.g.
/o [z+y]l{zr—=T,y— -1} =6
/e ==4)]{x— 5} =1
L1 (o, 1) = (p.p) A/ [R=MeL1(pn) = (p@{R= pl]p)}]p)
[Pos(e)] (p,n) = (p,p) if [e] p (_} [[-}_{[irl] =ex](pp) = (P-|N @ {[ed] p — [ea] p} ‘)
[Neg(e)] (p.pr) = (p.p) iffe]p=0 /
// [e] : evaluation of the expression e, e.g.

) le+yl{z—T,y— -1} =6
J Da==D]{z 5 =1

Pl

IR=¢e](p,p) = (.,u)
A

// where “&” modifies a mapping at a given argument

Example:
[t=2+1;]({z w5},) = (p,u) where:
p = {z=bte{z—[z+1]{z— 5}}

= {r—=5}%{r— 6}
= {;rH 6}

