Script generated by TTT

Title: Seidl: Programmoptimierung (22.10.2012)

Date: Mon Oct 22 14:02:05 CEST 2012

Duration: 90:47 min

Pages: 43

Helmut Seidl

Program Optimization

TU München
Winter 2012/13

1

Organization

Dates: Lecture: Monday, 14:00-15:30

Wednesday, 8:30-10:00

Tutorials: Tuesday/Wednesday, 10:00-12:00

 $Kalmer\ Apinis: \verb"apinis@in.tum.de"$

Material: slides, recording :-)

Moodle

Program Analysis and Transformation

Springer, 2012

Grades: • Bonus for homeworks

written exam

Organization

Dates: Lecture: Monday, 14:00-15:30

Wednesday, 8:30-10:00

Tutorials: Tuesday/Wednesday, 10:00-12:00

Kalmer Apinis: apinis@in.tum.de

Material: slides, recording :-)

Moodle

Program Analysis and Transformation

Springer, 2012

2

3. Exploiting Hardware

- \rightarrow Instruction selection
- \rightarrow Register allocation
- \rightarrow Scheduling
- → Memory management

Proposed Content:

- 1. Avoiding redundant computations
 - → available expressions
 - → constant propagation/array-bound checks
 - \rightarrow code motion
- 2. Replacing expensive with cheaper computations
 - → peep hole optimization
 - \rightarrow inlining
 - \rightarrow reduction of strength

...

4

0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

```
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
    }
}
```

6

.

Inefficiencies:

- Addresses a [i], a [j] are computed three times :-(
- Values a [i], a [j] are loaded twice :-(

Improvement:

- Use a pointer to traverse the array a;
- store the values of a [i], a [j]!

7

8

Inefficiencies:

- Addresses a [i], a [j] are computed three times :-(
- Values a [i], a [j] are loaded twice :-(

Improvement:

- Use a pointer to traverse the array a;
- store the values of a [i], a [j]!

7

Consequences:

- → Optimizations have assumptions.
- \implies The assumption must be:
 - formalized,
 - checked :-)
- → It must be proven that the optimization is correct, i.e., preserves
 the semantics !!!

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

$$y = f() + f(); \implies y = 2 * f();$$

Idea: Save second evaluation of f () ...

10

Observation 4:

Optimization techniques depend on the programming language:

- \rightarrow which inefficiencies occur;
- \rightarrow how analyzable programs are;
- $\rightarrow \quad$ how difficult/impossible it is to prove correctness ...

Example: Java

12

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

```
y = f() + f(); \implies y = 2 * f();
```

Idea: Save the second evaluation of £() ???

Problem: The second evaluation may return a result different from the

first; (e.g., because f () reads from the input :-)

11

Correctness proofs:

- + more or less well-defined semantics;
- features, features;
- libraries with changing behavior ...

void swap (int *p, int *q) {
 int t, ai, aj;
 ai = *p; aj = *g;
 t = aj;
 *q = ai;
 *p = t; // t can also be
 }
}

8

Correctness proofs:

- + more or less well-defined semantics;
- features, features;
- libraries with changing behavior ...

15

... in this course:

a simple imperative programming language with:

16

18

 $M[A_6] = t;$

12:

Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement f() for an unknown procedure f.

⇒ intra-procedural

in which (almost) everything can be translated.

Example: swap()

17

Optimization 1:
$$1*R \implies R$$

Optimization 2: Reuse of subexpressions

$$A_1 == A_5 == A_6$$

 $A_2 == A_3 == A_4$

$$M[A_1] == M[A_5]$$

$$M[A_2] == M[A_3]$$

$$R_1 == R_3$$

```
0: A_1 = A_0 + 1 * i;  // A_0 == \& a
1: R_1 = M[A_1]; // R_1 == a[i]
2: A_2 = A_0 + 1 * j;
R_2 = M[A_2]; // R_2 == a[j]
    if (R_1 > R_2) {
         A_3 = A_0 + 1 * j;
5:
        t = M[A_3];
7:
        A_4 = A_0 + 1 * j;
        A_5 = A_0 + 1 * i;
        R_3 = M[A_5];
9:
        M[A_4] = R_3;
10:
        A_6 = A_0 + 1 * i;
11:
         M[A_6] = t;
12:
                 18
```

```
Optimization 1: 1*R \implies R

Optimization 2: Reuse of subexpressions
A_1 == A_5 == A_6
A_2 == A_3 == A_4
M[A_1] == M[A_5]
M[A_2] == M[A_3]
R_1 == R_3
```

```
Optimization 1: 1*R \implies R
Optimization 2: Reuse of subexpressions A_1 == A_5 == A_6
A_2 == A_3 == A_4
M[A_1] == M[A_5]
M[A_2] == M[A_3]
R_1 == R_3
```

```
0: A_1 = A_0 + 1 * i;  // A_0 == \& a
1: R_1 = M[A_1]; // R_1 == a[i]
2: A_2 = A_0 + 1 * j;
R_2 = M[A_2]; // R_2 == a[j]
4: if (R_1 > R_2) {
5: 	 A_3 = A_0 + 1 * j;
     t = M[A_3];
6:
       A_4 = A_0 + 1 * j;
7:
       A_5 = A_0 + 1 * i;
8:
9:
        R_3 = M[A_5];
        M[A_4] = R_3;
10:
        A_6 = A_0 + 1 * i;
        M[A_6] = t;
12:
                18
```

Inefficiencies:

- Addresses a [i], a [j] are computed three times :-(
- Values a[i], a[j] are loaded twice :-(

Improvement:

- Use a pointer to traverse the array a;
- store the values of a [i], a [j]!

7

Optimization 3: Contraction of chains of assignments :-)

Gain:

	before	after
+	6	2
*	6	0
load	4	2
store	2	2
>	1	1
=	6	2

Inefficiencies:

- Addresses a [i], a [j] are computed three times :-(
- Values a[i], a[j] are loaded twice :-(

Improvement:

- Use a pointer to traverse the array a;
- store the values of a [i], a [j]!

7

Optimization 3: Contraction of chains of assignments :-)

Gain:

	before	after
+	6	2
*	6	0
load	4	2
store	2	2
>	1	1
=	6	2

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then

- → store it after the first computation;
- → replace every further computation through a look-up!
 - → Availability of expressions
 - → Memoization

22

Problem: Identify repeated computations!

Example:

23

Note:

B is a repeated computation of the value of y+z , if:

- (1) A is always executed before B; and
- (2) y and z at B have the same values as at A :-)
- ⇒ We need:
- ightarrow an operational semantics :-)
- ightarrow a method which identifies at least some repeated computations ...

Background 1: An Operational Semantics

we choose a small-step operational approach.

Programs are represented as control-flow graphs.

In the example:

25

Background 1: An Operational Semantics

we choose a small-step operational approach.

Programs are represented as control-flow graphs.

In the example:

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

26

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

25

Edge Labelings:

Test: Pos (e) or Neg (e)

 $\label{eq:assignment} \begin{array}{ll} \textbf{Assignment}: & R=e; \\ \textbf{Load}: & R=M[e]; \\ \textbf{Store}: & M[e_1]=e_2; \end{array}$

Nop:

Computations follow paths.

Computations transform the current state

$$s = (\rho, \mu)$$

where:

$\rho: Vars \to \mathbf{int}$	contents of registers
$\mu: \mathbb{N} o \mathrm{int}$	contents of storage

Every edge k = (u, lab, v) defines a partial transformation

$$[\![k]\!]=[\![lab]\!]$$

28

of the state:

$$\llbracket ; \rrbracket (\rho, \mu) = (\rho, \mu)$$

$$[\![\operatorname{Pos}\left(e\right)]\!] \left(\rho, \mu \right) \quad = \quad \left(\rho, \mu \right)$$

if
$$\llbracket e \rrbracket \, \rho \neq 0$$

$$[\![\operatorname{Neg}(e)]\!](\rho,\mu) = (\rho,\mu)$$

if
$$\llbracket e \rrbracket \rho = 0$$

$$\label{eq:continuous_equation} \begin{split} & [\![]\!] (\rho,\mu) &= (\rho,\mu) \\ & [\![\operatorname{Pos}\,(e)]\!] (\rho,\mu) &= (\rho,\mu) & \text{if } [\![e]\!] \, \rho \neq 0 \\ & [\![\operatorname{Neg}\,(e)]\!] (\rho,\mu) &= (\rho,\mu) & \text{if } [\![e]\!] \, \rho = 0 \\ & /\!/ \quad [\![e]\!] : & \text{evaluation of the expression } e, \text{e.g.} \\ & /\!/ \quad [\![x+y]\!] \, \{x\mapsto 7,y\mapsto -1\} = 6 \\ & /\!/ \quad [\![!(x==4)]\!] \, \{x\mapsto 5\} = 1 \end{split}$$

$$\llbracket ; \rrbracket \left(\rho, \mu \right) \hspace{1cm} = \hspace{1cm} \left(\rho, \mu \right)$$

$$[\![\operatorname{Pos}(e)]\!](\rho,\mu) = (\rho,\mu)$$

$$[\operatorname{Pos}(e)] (\rho, \mu) = (\rho, \mu)$$
 if $[\![e]\!] \rho \neq 0$
$$[\operatorname{Neg}(e)] (\rho, \mu) = (\rho, \mu)$$
 if $[\![e]\!] \rho = 0$

// $\llbracket e \rrbracket$: evaluation of the expression e, e.g.

$$// \|x+y\| \{x \mapsto 7, y \mapsto -1\} = 6$$

$$//$$
 $[!(x == 4)] \{x \mapsto 5\} = 1$

$$\llbracket R = e; \rrbracket (\rho, \mu) = (\rho \oplus \{R \mapsto \llbracket e \rrbracket \rho\}, \mu)$$

// where "\(\operatorname{"} \) modifies a mapping at a given argument

Example:

$$[x = x + 1;](\{x \mapsto 5\}, \mu) = (\rho, \mu)$$
 where:

$$\begin{array}{lcl} \rho & = & \{x \mapsto 5\} \oplus \{x \mapsto \llbracket x+1 \rrbracket \, \{x \mapsto 5\}\} \\ \\ & = & \{x \mapsto 5\} \oplus \{x \mapsto 6\} \end{array}$$

 $= \{x \mapsto 6\}$

32