Script generated by TTT

Title: Petter: Programmiersprachenh
(21.11.2018)

Date: Wed Nov 21 14:17:05 CET 2018

Duration: 93:02 min

Pages: 29

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable t0 ReadTx (&x)
@ convert every write access x=e to a shared variable to WriteTx (&x,e)

Convert atomic blocks as follows:

i

atomic { do {
/) cod StartTx();
C e —
N © // code with ReadTx and WriteTx
} while (!CommitTx());

10/32

Software Transactional Memory

Concurrency: Transactions Software Transactional Memory

9/32

i

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable t0 ReadTx (&x)
@ convert every write access x=e to a shared variable t0 WriteTx (&x,e)

Convert atomic blocks as follows:

atomic { do {
StartTx();
// code =
} // code with ReadTx and WriteTx

} while (!CommitTx());

@ translation can be done using a pre-processor
» determining a minimal set of memory accesses that need to be transactional
requires a good static analysis
» idea: translate all accesses to global variables and the heap as TM
» more fine-grained control using manual translation
@ an actual implementation might provide a retry keyword
» when executing retry, the transaction aborts and re-starts
» the transaction will again wind up at retry unless its read set changes
~» block until a variable in the read-set has changed
» similar to condition variables in monitors v

Concurrency: Transactions Software Transactional Memory

10/32

i

A Software TM Implementation

A software TM implementation allocates a transaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log pf writes if writes are postponed until a commit

@ read- and write-set. locations accessed so far

@ read- and write-version: time stamp when value was accessed

[]

Concurrency: Transactions Software Transactional Memory

11/32

i

Opacity is guaranteed by aborting on a read accessing an inconsistent value:

StartTx ReadTx WriteTx ReadTx
—% o o —

i i
[>l

memory state seems to be consistent

Properties of TL2

CommitTx
S
i write redo-log
g validate read set
increment global clock

Other observations:

@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still require
» deadlocks are still possible
» since other transactions can be aborted, one can preempt transactions that
are deadlocked
» since lock accesses are generated, computing a lock order up-front might be
possible

@ there might be contention on the|global clock

Concurrency: Transactions Software Transactional Memory

13/32

i

The idea: obtain a version from the global counter on starting the transaction,
the read-version, and watch out for accesses to newer versions throughout
the transaction.

Principles of TL2

Concurrency: Transactions Software Transactional Memory

12/32

General Challenges when using STM i

Executing atomic blocks by repeatedly trying to execute them non-atomically
creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
}

int r = ReadTx(&x,0);
} // tx.RV==12 != clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction
» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed
~ idea of the original STM proposal

@ TM system should figure out which memory locations must be logged
@ danger of live-locks: transaction B might abort A which might abortB ...

14 /32

i

Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block
poses problems:
@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics

15/32

Concurrency: Transactions Software Transactional Memory

Hardware Transactional Memory

16/32

Concurrency: Transactions Hardware Transactional Memory

i

Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block
poses problems:
@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following:
Certain constructs do not make sense. Use compiler to reject
these programs.
° /O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

9| Integrate It.|Re-write code to be transactional: error logging, writing data

to afile,
Concurrency: Transactions Software Transactional Memory 15/32

i

Hardware Transactional Memory

Transactions of g limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conlflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts

» if a cache-line in the write set must be written-back, the transaction aborts
~ limited by fixed hardware resources, a software backup must be provided

17/32

Concurrency: Transactions Hardware Transactional Memory

i

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts

~ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
@ Explicit Transactional Memory: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions
~+ atransaction has to be translated differently
& mixing transactional and non-transactional accesses is problematic
@ impiicit Transaciionai iviemory: oniy ine beginning and end of a
transaction are marked
» same instructions can be used, hardware interprets them as transactional
» only instructions affecting memory that can be cached can be executed
transactionally
» hardware access, OS calls, page table changes, etc. all abort a transaction
~» provides strong isolation

Concurrency: Transactions Hardware Transactional Memory

17/32

i

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MoV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's TSX in Broadwell/Skylake microarchitecture (sinc

Aug 2014):

@ implicitely transactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines

@ provides space for a backup of the whole CPU state (registers, ...)

@ use a simple counter to support nested transactions

@ may abort at any time due to lack of resources

@ aborting in an inner transaction means aborting all of them

Concurrency: Transactions Hardware Transactional Memory

18/32

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations

Concurrency: Transactions Hardware Transactional Memory

Restricted Transactional Memory

Concurrency: Transactions Hardware Transactional Memory

Restricted Transactional Memory

i

18/32

19/32

i

Implementing RTM using the Cache (Intel)

Supporting Transactional operations:
@ augment each cache line with an extra bit T’
@ introduce a nesting counter C and a backup register set

~~ additional transaction logic:

CPU | | | register @ xbegin increments C and, if C =0,
bank backs up registers and flushes buffer

l » subsequent read or write access to a

store cachelinesets Tif C >0
®—buffer » applying an invalidate message from

1 +avatidate-guete to a cache line with 7'

flag issues xabort
» observing a read for a modified cache
line with T" flag issues xabort
@ xabort clears all T flags and the store
buffer, invalidates the former T'M lines,
sets C' = 0 and restores CPU registers

@ xend decrements C and, if C = 0, clears
all T flags, flushes store buffer

Concurrency: Transactions Hardware Transactional Memory

cache

Memory

20/32

i

Restricted Transactional Memory

Considerations for the Fall-Back Path

Consider executing the following code concurrently with itself:

int datal[100]; // shared
void update(int idx, int value) {
if (_xbegin()==_XBEGIN_STARTED) {
datal[idx] += value;
_xend();
} else {
|| data[idx] += value;

}

22/32

Concurrency: Transactions Hardware Transactional Memory

Restricted Transactional Memory

Restricted Transactional Memory

Provides new instructions xbegin, xend, xabort, and xtest:
@ xbegin on transaction start skips to the next instruction or on abort

» continues at the given address
» implicitely stores an error code in eax

@ xend commits the transaction started by the most recent xbegin
@ xabort aborts the whole transaction with an error code
@ xtest checks if the processor is executing transactionally

0

Y
Concurrency: Transactions Hardware Transactional Memory Restricted Transactional Memory

Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared

int mutex;

void update(int idx, int value) {
if (_xbegin()==_XBEGIN_STARTED) {

datal[idx] += value;
_xend () ;

} else {
wait (mutex) ;
datalidx] += wvalue;
signal (mutex) ;

¥

@ the fall-back code does not execute racing itself v

Restricted Transactional Memory

Concurrency: Transactions Hardware Transactional Memory

i

21/32

i

23/32

Happened Before Diagram for Transactions [T
1 CPU A: d:E5 t:E0, CPU B: d:l

Augment MESI states with extra
Thread A

int t = _xbegin(); _xbegin();

int tmp = datalidx]; int tmp = datalidx];
datalidx] = tmptvalue; datalidx] = tmp+value; ¢
_xend() ; _xend();

ift t= _xbegln() tmp—data[ldx] data[idx]=tmp+value

9

~

dL
store

B xbegln()tmp-data idx] data[1dx]-tmp+va1ue

xend()
Concurrency: Transactions Hardware Transactional Memory

24/32

i

void update(int idx, int val) {

Restricted Transactional Memory

Common Code Pattern for Mutexes
Using HTM in order to implement mutex:

int datal[100]; // shared lock (&mutex) ;
int mutex; datalidx] += val;
void update(int idx, int val) { unlock (&mutex) ;

if (_xbegin()==_XBEGIN_STARTED) ¥

{ if ('mutex>0) _xabort(); void lock(int* mutex) {
datal[idx] += val; [T (_xbegin()==_XBEGIN_STARTED)
_xend () ; { if (!'*mutex>0) _xabort();

} else { else return;
wait (mutex); } wait (mutex);
datalidx] += val; 3
signal (mutex) ; void unlock(int* mutex) {

T if (!*mutex>0) signal(mutex);

T else _xend();
T
@ critical section may be executed without taking the lock (thg lock is elided)

@ as soon as one thread conflicts, it aborts, takes the lock in the fallback
path and thereby aborts all other transactions that have read mutex

Restricted Transactional Memory ~ 25/32

Concurrency: Transactions Hardware Transactional Memory

Common Code Pattern for Mutexes
Using HTM in order to implement mutex:

int datal[100]; // shared
int mutex;
void update(int idx, int val) {
if (_xbegin ()==_XBEGIN_STARTED)
{ if (!mutex>0) _xabort();
|data[idx] += val;
_xend () ;
} else {
wait (mutex) ;

|data[idx] += val; |

signal (mutex) ;

Hardware Lock Elision

Concurrency: Transactions Hardware Transactional Memory

Restricted Transactional Memory

Hardware Lock Elision

25/32

26/32

Hardware Lock Elision

Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE

@ provides a way to execute a critical section without the need to
immediately modify the cacheline in order to acquire and release the lock

@ requires annotations:
\Aliﬂl xacqu ire

» instruction that increments the semaphore must be prefixe
» instruction setting the semaphore to 0 must be prefixed with xrelease
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be

annotated
Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 27/32

i

Transactional Memory: Summary

Transactional memory aims to provide atomic blocks for general code:
@ frees the user from deciding how to lock data structures
@ compositional way of communicating concurrently
@ can be implemented using software (locks, atomic updates) or hardware

Concurrency: Transactions Hardware Transactional Memory

Hardware Lock Elision 29/32

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory
@ add a buffer for elided locks, similar to store buffer

@ xacquire Of lock ensures
shared/exclusive cache line state with T,
issues xbegin and keeps the modified
lock value in elided lock buffer

» r/w access to other cache lines sets T

» applying an invalidate messagetoa T
cache line issues xabort, analogous for
read message to a TM cache line

» a local CPU load from the address of
the elided lock accesses the buffer

@ on xrelease on the same lock,
decrement C and, if C = 0, clear T flags
and elided locks buffer flush the store
buffer

register C

CPU | bank

store
buffer

v
cache T

elided
Iogks

L)
I

Memory

Concurrency: Transactions Hardware Transactional Memory

Hardware Lock Elision

TM in Practice

Availability of TM Implementations:

@ GCC can translate accesses ir1 _transaction_atomic|regions into
[1ibitnm library calls |
@ the library 1ibitm provides different TM implementations:

@ On systems with TSX, it maps atomic blocks to HTM instructions
@ On systems without TSX and for the fallback path, it resorts to STM

@ C++20 standardizes synchronized/atomic_XXX blocks
@ RTM support slowly introduced to OpenJDK Hotspot monitors

Concurrency: Transactions Hardware Transactional Memory

Hardware Lock Elision

28/32

i

30/32

Outlook

Several other principles exist for concurrent programming:

@ non-blocking message passing (the actor model)
» a program consists of actors that send messages
each actor has a queue of incoming messages
messages can be processed and new messages can be sent
special filtering of incoming messages
example: Erlang, many add-ons to existing languages
© blocking message passing (CSP, w-calculus, join-calculus)
> aprocess sends a message over a channel and blocks until the recipient
accepts it
» channels can be send over channels (w-calculus)
» examples: Occam, Occam-m, Go
© (immediate) priority ceiling
» declare processes with priority and resources that each process may acquire
» each resource has the maximum (ceiling) priority of all processes that may
acquire it
» aprocess’ priority at run-time increases to the maximum of the priorities of

held resources
» the process with the maximum (run-time) priority executes

Concurrency: Transactions Hardware Transactional Memory

vy vVvYY

Hardware Lock Elision 31/32

i

References

¥ D. Dice, O. Shalev, and N. Shavit.
Transactional Locking Il
In Distributed Coputing, LNCS, pages 194—208. Springer, Sept. 2006.

¥ T. Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.

Online resources on Intel HTM and GCC’s STM:

@ http://software.intel.com/en-us/blogs/2013/07/25/
fun-with-intel-transactional-synchronization-extensions

© http://www.realworldtech.com/haswell-tm/4/

© http:
//wuw.open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3341. pdf

Hardware Lock Elision 32/32

Concurrency: Transactions Hardware Transactional Memory

