Script generated by TTT

Title: Petter: Programmiersprachenh Deadlocks
(14.11.2018)
Date: Wed Nov 14 14:11:50 CET 2018
Duration: 86:35 min
Pages: 27
71138

Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Atomic Executions, Locks and Monitors Deadlocks

i

i

Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

28/38

Consider this Java class:

class Foo {

public Eoo other| = null;

public synchronized void bar()
. if (%) other.bar();

}

3

and two instances:

Foo a = new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

Sequence leading to a deadlock:

@ threads A and B execute a.bar ()
and b.bar ()

{ @ a.bar() acquires the monitor of a
@ b.bar () acquires the monitor of b

@ A happens to execute
other.bar()

@ A blocks on the monitor of b

@ B happens to execute
other.bar()

@ ~ both block indefinitely

a.bar() || b.bar(Q);
28/38

Treatment of Deadlocks
Observation: Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshanil:
@ mutual exclusion: processes require exclusive access
© wait for. a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
© circular wait: waiting processes form a cycle

Atomic Executions, Locks and Monitors Deadlocks

Deadlock Treatment 29/38

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks are partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o+ of a relation o:

Definition (transitive closure)

Let 0 C X x X be a relation. lts transitive closure is ot = J,_ o* Where

0'0=0'

o = {(xy,x3) |z € X . (1, 22) € 0" A (29,23) € 0°}

Atomic Executions, Locks and Monitors Deadlocks

Deadlock Prevention 30/38

i

Atomic Executions, Locks and Monitors Deadlocks

i

i

Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks are partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

Deadlock Prevention 30/38

i

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks are partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure ot of a relation o:

Definition (transitive closure)

Let 0 C X x X be a relation. lts transitive closure is o = | J,.,y 0" where

@ =0
o = {(xy,x3) | Ja € X . {z1,10) € 0° A (x,23) € ¢}

Each time a lock is acquired, we track the lock set at p:
Definition (lock order)

Define <« C L x L such thatl <!’ iff | € A(p) and the statement at p is of the
form wait (1°) or monitor_enter (1°). Define the strict lock order <= <+.

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 30/38

Freedom of Deadlock m Freedom of Deadlock m

The following holds for a program with mutexes and monitors: The following holds for a program with mutexes and monitors:
Theorem (freedom of deadlock) Theorem (freedom of deadlock)

If there exists no a € L with a < a then the program is free of deadlocks. If there exists no a € L with a < a then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) Ls and on monitors L,
suchthat L = Lg U Ly,;.

Theorem (freedom of deadlock for monitors)

IfVa € Ls.a 4 aandVa € Lyy,be L.a<bAb=<a= a=>then the program
is free of deadlocks.

Doadlock Frevention 31/33 Deadlock Erevention [51/38
Avoiding Deadlocks in Practice m Atomic Execution and Locks m

Consider replacing the specific locks with atomic annotations:

How can we verify that a program contains no deadlocks?
@ identify mutex locks Lg and summarized monitor locks L3, C Ly,
@ identify non-summary monitor locks L%, = Ly \ L§, void pop() {

© sort locks into ascending order according to lock sets
© check that no cycles exist except for self-cycles of non-summary monitors

wait(&q—>t);

if (x) { signal(&qr>t))]| return;

if (c) wait(&q->s)

if (c) signal(&q->s);
signal (&g->t); |

Atomic Executions, Locks and Monitors Deadlocks Deadlock Prevention 32/38 Atomic Executions, Locks and Monitors Locks Roundup 34/38

i

Writing atomic annotations around sequences of statements is a convenient
way of programming.

Outlook

35/38

Atomic Executions, Locks and Monitors Locks Roundup

Concurrency across Languages

In most systems programming languages (C,C++) we have
@ the ability to use atomic operations
~+ we can implement wait-free algorithms

36/38

Atomic Executions, Locks and Monitors Locks Roundup

i

Writing atomic annotations around sequences of statements is a convenient
way of programming.

Outlook

Ildea of mutexes: Implement atomic sections with locks:
@ a single lock could be used to protect all atomic blocks
@ more concurrency is possible by using several locks

@ some statements might modify variables that are never read by other
threads ~~ no lock required

@ statements in one atomic block might access variables in a different order
to another atomic block ~ deadlock possible with locks implementation

@ creating too many locks can decrease the performance, especially when
required to release locks in A(l) when acquiring [

35/38

Atomic Executions, Locks and Monitors Locks Roundup

Concurrency across Languages

In most systems programming languages (C,C++) we have
@ the ability to use atomic operations
~ we can implement wait-free algorithms
In Java, C# and other higher-level languages
@ provide monitors and possibly other concepts
@ often simplify the programming but incur the same problems

| language || barriers | wait-/lock-free | semaphore | mutex | monitor |

C,C++ v v v v (a)
Java,C# - (b) () v v

(a) some pthread implementations allow a reentrant attribute

(b) newer API| extensions (java.util.concurrent.atomic.#* and
System.Threading.Interlocked resp.)

(c) simulate semaphores using an object with two synchronized

methods
Atomic Executions, Locks and Monitors Locks Roundup 36/38

Summary

Classification of concurrency algorithms:
o wait-free, lock-free, locked |
@ next on the agenda; transactional |
Wait-free algorithms:
@ never block, always succeed, never deadlock, no starvation
@ very limited in expressivity X
Lock-free algorithms:
@ never block, may fail, never deadlock, may starve
@ invariant may only span a few bytes (8 on Intel) X
Locking algorithms:
@ can guard arbitrary code
@ can use several locks to enable more fine grained concurrency
@ may deadlock X}’
@ semaphores are not re-entrant, monitors are
~~ use algorithm that is best fit

Atomic Executions, Locks and Monitors

@ 2locks : bash — Konsole
Datei Bearbeiten Ansicht Lesezeichen Einstellung
petter@michaels-t420s $
petter@michaels-t420s:

OF e B

~ use algorithm that is best fit

‘Atomic Executions, Lacks and Moritors.

[
petter@michaels-t420s References

‘®> E. G. Coffman, M. Elphick, and A. Shoshani.
System deadlocks.
ACM Comput. Surv., 3(2):67-78, June 1971
ISSN 0360-0300

‘W™ T. Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.

Bl 2locks : bash

37/38

o I B =

Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010

sy | |@|FC 2| 3| 4 |E2locks : bash — Konsole

% Programming Languages

[LLT5 0

References

¥ E. G. Coffman, M. Elphick, and A. Shoshani.
System deadlocks.
ACM Comput. Surv., 3(2):67-78, June 1971.
ISSN 0360-0300.

¥ T. Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.

Atomic Executions, Locks and Monitors

Abstraction and Concurrency

Two fundamental concepts to build larger software are:

abslraction |. an object storing certain data and providing certain
functionality may be used without reference to its internals
: several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.

composition

Concurrency: Transactions

38/38

2/32

Transactional Memory [2] U

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code
}
// code

Concurrency: Transactions Motivation

Semantics of Transactions i

The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:

atomicity : a transaction completes or seems not to have run

~ we call this failure atomicity to distinguish it from atomic
executions

consistency : each transaction transforms a consistent state to another
consistent state

@ a consistent state is one in which certain invariants hold
@ invariants depend on the application

isolation : transactions do not interfere with each other
~ not so evident with respect to non-transactional memory
durability : the effects are permanent v

Concurrency: Transactions Transaction Semantics

3/32

4/32

Semantics of Transactions i

The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:

Consistency During Transactions Tl

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ in the best case, the zombie transaction will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert (tmpl-tmp2==0) ; y = 10;

} }

/N critical for null pointer derefs or divisions by zero, e.g.

Definition (opacity)

A TM system provides opacity if failing transactions are serializable w.r.t.
committing transactions.

~ failini transactions still see a consistent view of memory
Concurrency: Transactions Transaction Semantics 5/32

Weak- and Strong Isolation M Disadvantages of the SLA model i

If guarantees are only given about memory accessed inside atomic, a TM The SLA model is simple but often too strong:
implementation provides weak isolation. _ @ SLA has a weaker progress guarantee than a transaction should have
Can we mix transactions with code accessing memory non-transactionally? // Thread 1 // Thread 2
@ no conflict detection for non-transactional accesses atomic { atomic {
@ standard race problems as in unlocked shared accesses while (true) {}; int tmp = x; // x in TH
// Thread 1 ¥ 1
atomic { // Thread 2 © SLA correctness is too strong in practice
X = 42; int tmp = x; // Thread 2
¥ // Thread 1 atc_)mlc 1 ~
~+ give programs with races the same semantics as if using a single global data = 1; int tmp = _ .
lock for all atomic blocks atomic < // Thread 1{not in atomic
)) , if d
@ sfrong isolation retains order between accesses to TM and non-TM } 1T Krea Y»
ready = 1; /7 use tmp
}
}

» under the SLA model, atomic {} acts as barrier
» intuitively, the two transactions should be independent rather than
synchronize

~ need a weaker model for more flexible implementation of strong isolation

Transactional Sequential Consistency i

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
~ the programmer cannot rely on synchronization

Definition (TSC)

The fransactional sequential consistency is a model in which the accesses .
within each transaction are sequentially consistent. Software Transactional Memory

Concurrency: Transactions Transaction Semantics 8/32 Concurrency: Transactions Software Transactional Memory 9/32

