Script generated by TTT

Title: Petter: Programmiersprachenh
(07.11.2018)

Date: Wed Nov 07 14:08:44 CET 2018
Duration: 89:08 min

Pages: 31

Why Memory Barriers are not Enough i

Often, multiple memory locations may only be modified exclusively by one
thread during a computation.

@ use barriers to implement automata that ensure mutual exclusion
~ generalize the re-occurring concept of enforcing mutual exclusion

Atomic Executions, Locks and Monitors Motivation

2/38

TECHNISCHE UNIVERSITAT MUNCHEN IMI
FAKULTAT FUR INFORMATIK

Programming Languages

Concurrency: Atomic Executions, Locks and Monitors

Dr. Michael Petter
Winter 2018

Atomic Executions, Locks and Monitors

Atomic Executions

A concurrent program consists of several threads that share fesources]
@ resources can b¢ memory Iocations|or|memory mapped 1/O |
» afile can be modified through a shared handle, e.g.
@ usually invariants must be retained wrt. resources

» e.g. a head and tail pointer must delimit a linked list
» aninvariant may span multiple resources
» during an update, the invariant may be temporarily locally broken

~ multiple resources must be updated together to ensure the invariant

Atomic Executions, Locks and Monitors Motivation

1/38

i

3/38

i

Overview

We will address the established ways of managing synchronization. The
presented techniques

@ are available on most platforms

@ likely to be found in most existing (concurrent) software
@ provide solutions to common concurrency tasks

@ are the source of common concurrency problems

The techniques are applicable to C, C++ (pthread), Java, C# and other
imperative languages.

4/38

Atomic Executions, Locks and Monitors Motivation

Wait-Free Atomic Executions

5/38

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions

i

Overview

We will address the established ways of managing synchronization. The
presented techniques

@ are available on most platforms

@ likely to be found in most existing (concurrent) software
@ provide solutions to common concurrency tasks

@ are the source of common concurrency problems

The techniques are applicable to C, C++ (pthread), Java, C# and other
imperative languages.

Learning Outcomes

@ Principle of Atomic Executions

© Wait-Free Algorithms based on Atomic Operations
© Locks: Mutex, Semaphore, and Monitor

© Deadlocks: Concept and Prevention

4/38

i

Wait-Free Updates

Which operations on a CPU are atomic? (j,k and tmp are registers)

K] int tmp = 1i;
J =1

i++; . i=3;
’ i = i+k; . .
j = tmp;

Wait-Free Bumper-Pointer Allocation

Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[2720];
char* firstFree = &heap[0];

char* alloc(int size) {
char* _start = firstFree;

firstfFree = firstFree +

size;

if (start+size>sizeof (heap)) garbage_collect();
return start;

}

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

]

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions

7/38

i

Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

atomic { atomic { atomic {
r = b; r = b r = (k==1i);
b = 0; b =1; if (r) i = j;
¥ ¥ ¥

Operations update a memory cell and return the previous value.
@ the first two operations can be seen as setting a flag b to v € {0,1} and
returning its previous state.
» this operation is called set-and-test
@ the third case generalizes this to setting a variable i to the value of j, if
i’s old value is equal to k’s.
» this operation is called compare-and-swap

Wait-Free Synchronization 9/38

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions

i

Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 1

. atomic {
. atomic { . .
atomic { -) int tmp = i;
i++;]~ i=7;
’ i= i+k; P
} } j = tmp;
}
Lock-Free Algorithms

Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

i

atomic { atomic { atomic {
r = b; 7 = 5 r = (k==i);
b = 0; b= dg if (r) i = j;
¥ ¥ ¥

Operations update a memory cell and return the previous value.

@ the first two operations can be seen as setting a flag b to v € {0,1} and

returning its previous state.
» this operation is called set-and-test
@ the third case generalizes this to setting a variable i to the value of j
i’s old value is equal to k’s.
» this operation is called compare-and-swap

~~ use as building blocks for algorithms that can fai/

i

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions Wait-Free Synchronization 9/38

Lock-Free Algorithms

i

If a wait-free implementation is not possible, a /ock-free implementation might

still be viable.
Common usage pattern for compare and swap:
@ read the initial value in i into k& (using memory barriers)
© compute a new value j = f(k)
© update i to j if i = k still holds
Q go to first step if i # k meanwhile

/N note: i = k must imply that no thread has updated ¢

General recipe for lock-free algorithms

@ given a compare-and-swap operation for n bytes

@ try to group variables for which an invariant must hold into n bytes
@ read these bytes atomically

@ compute a new value

@ perform a compare-and-swap operation on these n bytes

Atomic Executions, Locks and Monitors Lock-Free Algorithms

11/38

Lock-Free Algorithms

Atomic Executions, Locks and Monitors Lock-Free Algorithms 10/38

Limitations of Wait- and Lock-Free Algorithms i

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand

vyvvyyvy

Atomic Executions, Locks and Monitors Lock-Free Algorithms 12/38

Locks m

4
Definition (Lock) ;}

A lock is a data structure that
@ can be acquired and released
@ ensures mutual exclusion: only one thread may hold the lock at a time
@ blocks other threads attempts to acquire while held by a different thread

@ protects a critical section: a piece of code that may produce incorrect
results when entered concurrently from several threads

| —

VAN may deadlock the program

Implementation of Semaphores
A semaphore does not have to wait busily:

void wait(int *s) {
bool avail;
do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;

wake(_s_); if (avail) (*s)--;

} C\s-\
if (lavail 2He_schedulegg_);

} while (lavail);
}

Atomic Executions, Locks and Monitors Locked Atomic Executions

16/38

Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:
void wait(int *s) {

bool avail;
do {

>
void|signal(int *s) {| ///

ic {

atomic [{ *s = #s + 1; H avail =|*s>0; F
T if (avai *s)-—;
}
} while (lavail);
}

Practical Implementation of Semaphores
Certain optimisations are possible:

void wait(int *s) {
bool avail;
do {
atomic {
avail = *s>0;
if (avail) (*s)--;

void signal(int *s) {
atomic { *s = *s + 1; }
wake(s);

} }

i

15/38

i

if ('avail) de_schedule(s);

} while (lavail);
}
In general, the implementation is more complicated
@ wait() may busy wait for a few iterations

» avoids de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time

@ wake(s) informs the scheduler that s has been written to

Atomic Executions, Locks and Monitors Locked Atomic Executions

17/38

Mutexes

One common use of semaphores is to guarantee mutual exclusion.
@ in this case, a binary semaphore is also called a mutex
@ e.g. add a lock to the double-ended queue data structure

/N decide what needs protection and what not

Atomic Executions, Locks and Monitors Locked Atomic Executions

Implementation of a Basic Monitor
A monitor contains a semaphore count and the id tid of the occupying
thread:

typedef struct monitor mon_t;
struct monitor { int tid; int count; 7};

18/38

i

void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); }

Define monitor_enter and monitor_leave:
@ ensure mutual exclusion of accesses to mon_t
@ track how many times we called a monitored procedure recursively
void monitor_enter(mon_t *m) {
bool mine = false;
while (Tmine)] {

= thread_id()==m->tid;

m->count--;
if (m->count==0) {
// wake up threads

if (mine) m—>count++; else atomic {
atomic { m->tid=0;
if (m->tid==0) { 3}
m->tid = thread_id(); }

mine = true; m->count=1;

I
if (Imine) de_schedule(&m->tid);}}

Atomic Executions, Locks and Monitors Locked Atomic Executions

void monitor leave(mon_t *m) {

20/38

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function

L]

Atomic Executions, Locks and Monitors Locked Atomic Executions

Condition Variables
v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
@ if a thread ¢ waits for a data structure to be filled:
» t will call e.g. pop() and obtain -1
» t then has to call again, until an element is available
JAN is busy waiting and produces contention on the lock

19/38

Atomic Executions, Locks and Monitors Locked Atomic Executions

21/38

Condition Variables Signal-And{Continue]Semantics i

v Monitors simplify the construction of thread-safe resources. Here, the signal function is usually called
Still: Efficiency problem when using resource to synchronize: o

@ if a thread ¢ waits for a data structure to be filled:
» t will call e.g. pop() and obtain -1
» ¢ then has to call again, until an element is available
N tis busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; int cond; int cond2;... };

Define these two functions:
@ wait for the condition to become true
» called while being inside the monitor
» temporarily releases the monitor and blocks
» when signalled, re-acquires the monitor and returns
© signal waiting threads that they may be able to proceed
» one/all waiting threads that called warit will be woken up, two possibilities:
signal-and-urgent-wait : the signalling thread suspends and continues once
the signalled thread has released the monitor
signal-and-continue the signalling thread continues, any signalled thread
enters when the monitor becomes available

Locked Atomic Executions 21/38

i

Atomic Executions, Locks and Monitors

Signal-And-Urgent-Wait Semantics

Requires one queue for each condition ¢ and a suspended queue s:

>
=3
[}
=

OO \ notified \ /

N (r
O ?E[notified |

\ \

)\ N

J\ I\,
\

ba|) L a
a.q \J

\
o

wait a e

<
AN
noti
{ wait b (,,/’j}:
.

source: http://en.wikipedia.org/wiki/Monitor _(synchronization)

Atomic Executions, Locks and Monitors

Signal-And-Continue Semantics

Locked Atomic Executions

@ acall to wait on condition ¢ adds
thread to the queue a.q

@ acall to notify for @ adds one
thread from a.q 10 e (unless a.q is
empty)

@ if a thread leaves, it wakes up one
thread waiting on e

23/38

i

Here, the signal function is usually called notify.

@ athread who tries to enter a @
% monitor is added to queue e if) @ acall to wait on condition ¢ adds
Q the monitor is occupied — T thread to the queue a.q
\V4 O @ acall to wait on condition a P Y @ acall to notify for a adds one
O1o adds thread to the queue a.q O ﬁ notified Q thread from a.q to e (unless a.q is
O . @ acall to signal for a adds) : N .empty) _
‘ a =/ thread to queue s (suspended) O %*\ / e ifa thread_ I_eaves, it wakes up one
29N EEE Y Ml | © onethread form the « queue is aq N . thread waiting on e
‘Q:lwled a woken up < waita ‘v’
O D/\ O @ signalonaisano-opifa.qis [Y
b wait b empty j wait b nf}[fy
%\\Signa”ed _ @ if a thread leaves, it wakes up '\)
O o > S one thread waiting on s =
[. m @ if s is empty, it wakes up one \%
\/ thread from e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

~» queue s has priority over e

Locked Atomic Executions 22/38

Atomic Executions, Locks and Monitors

source: http://en.wikipedia.org/wiki/Monitor _(synchronization)

Atomic Executions, Locks and Monitors

Locked Atomic Executions

23/38

i

Implementing Condition Variables

We implement the simpler signal-and-continue semantics for a single
condition variable:
~» a notified thread is simply woken up and competes for the monitor
void cond_wait(mon_t *m) {

assert (m—>tid==thread_id());

int old_count = m->count;

m->tid = 0;
| wait (&m->cond) ; |

bool next_to_enter;
do { void cond_notify(mon_t *m) {
atomic { // wake up other threads
next_to_enter = m->tid==0; [signal (&m->cond) ; |
if (next_to_enter) { }
m->tid = thread_id();
m->count = old_count;
}
}
if (!'next_to_enter) de_schedule(&m->tid);
} while ('next_to_enter);} r

24/38

i

Monitors with a Single Condition Variable

Monitors with a single condition variable are built into Java and C#:
class C {
public synchronized void f() {
// body of f
1

is equivalent to

class C {

public void £() {
monitor_enter (this);
// body of £ Llis wait):
monitor_leave(this);

©
3
=
[}
=

vt El 5 sl
O 1
with Object containing:
private int mon_var;
private int mon_count;
private int cond_var;

protected void monitor_enter();
protected void monitor_leave();

i

<;; aAeg|

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

26/38

Atomic Executions, Locks and Monitors Locked Atomic Executions

i

Monitors with a Single Condition Variable

Monitors with a single condition variable are built into Java and C#:

class C {
2 public synchronized void £() {
e // body of £
notified 1
O O is equivalent to
© g) class C {

public void £() {
monitor_enter (this);
// body of f
monitor_leave(this);

Vs

wait

:ii

14

O 1B}
with Object containing:

private int mon_var;

private int mon_count;

private int cond_var;

protected void monitor_enter();
protected void monitor_leave();

<§; EYCE

source: http://en.wikipedia.org/wiki/Monitor _(synchronization)

Atomic Executions, Locks and Monitors Locked Atomic Executions 26/38
27/38

Atomic Executions, Locks and Monitors Deadlocks

