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TSO in the Wild: x86

The x86 CPUs, powering desktops and servers around the world is a
common representative of a TSO Memory Model based CPU.

@ FIFO store buffers keep quite strong consistency properties
@ The major obstacle to Sequential Consistency is

Stilal < L4i[b] #  stia] C Ld;[b]

» modern x86 CPUs provide the instruction
» mfence orders all memory instructions:

Op; { mfence()|< op;/ = Op;Cop,/

@ a fence between write and loads gives sequentially consistent CPU
behavior (and is as slow as a CPU without store buffer)

~ use fences only when necessary
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Happened-Before Model for TSO
Thread B

printf("%d",b);\_//printf("%d", a) ;
<

Assume cache A contains: a: S0, b: S0, cache B contains: a: S0, b: SO

La=1 _priptf("%d"ﬂ%
store C]"'%_:'r[n.ﬂ'l P
0,5
o
O
< <,
& a
R bS'D
store €1 GCb2l [
b=1 printf ("sd",la)0
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Definition (Partial Store Order)

o The store order wrt. memory ( C ) is total
Va,b € adir ij ecrv (Stila] C St;[b]) V (Stj[b] E St,[a])
9 Fenced stores in program order ( < ) are embedded into the memory order ( C )

PSO Model: Formal Spec [S192]

| Sti[a] < sfence () < St;[b] = St;[a] C st;[b]
9 Stores to the same address in program order ( < ) are embedded into the memory order ( C )

[stila] < stifa) = stifa] C stifa)’ |
o Loads preceding an other operation (wrt. program order <) are embedded into the memory order ( C )
Ldi[a] < Op;[b] = Ldi[a] C Op;[b]
6 A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(st;[a] | St;la] :mgx ({stxla] | stla] C Ld;[a]} U {st;[d] | sti[a] < Ld;[a]}))

A Now also stores are not guaranteed to be in order any more:

Sti[a] < sti[b] # stila] C st;[b]

~~ What about sequential consistency for the whole system?
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Store Buffers

/\ Abstract Machine Model: defines semantics of memory accesses

CPUA CPUB
stolre stoJFe
®— buffer ®—buffer

cache

cache

Memory

@ put each store into a store buffer
and continue execution
@ Store buffers apply stores in
various orders:
» FIFO (Sparc/x86-TSO)
» unordered (Sparc PSO)

o A\ program order still needs to
be observed locally
» store buffer snoops read channel
and
» on matching address, returns
the youngest value in buffer

Memory Consistency Out-of-Order Execution Stores

Happened-Before Model for PSO

a=1;
b =1;

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

Thread B

while (b == 0) {};
assert (a == 1);

a=1 b=1
A *—9 o —
store % 2y ® ?
oy Y b Fy
Sh ¥ oo :
O &
g5
Y
& a —
o b - X
P4 *
B . %
b==

MM PSO Model: Formal Spec [S192] i
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Definition (Partial Store Order)
o The store order wrt. memory ( C ) is total

Va,b € adir ij ecrv (Stila] C St;[b]) V (Stj[b] E St,[a])
o Fenced stores in program order ( < ) are embedded into the memory order ( C )

Sti[a] < sfence () < St;[b] = St;[a] C st;[p]
Q Stores to the same address in program order ( < ) are embedded into the memory order ( C )

st;[a] < stia]’ = sti[a] T sti[a]’
0 Loads preceding an other operation (wrt. program order <) are embedded into the memory order ( C )

Ldi[a] < Op;[b] = Ldi[a] C Op;[b]
e A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(st;[a] | st;[a] :mgx ({stx[a] | stela] C Ldi[a]} U {sti[d] | sti[a] < Ldi[a]}))

A Now also stores are not guaranteed to be in order any more:

Sti[a] < Sti[b] # stila] C st;[b]

~~ What about sequential consistency for the whole system?

s
Explicit Synchronization: Write Barrier i

Overtaking of messages may be desirable and does not need to be prohibited
in general.

@ generalized store buffers render programs incorrect that assume
sequential consistency between different CPUs

@ whenever a store in front of another operation in one CPU must be

observable in this order by a different CPU, an explicit write barrier has to
be inserted

» a write barrier marks all current store operations in the store buffer

» the next store operation is only executed when all marked stores in the buffer
have completed

34/54
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Happened-Before Model for Write Barriers

Thread B
a = 1; while (b == 0) {};
sfence () ;
5 =1 assert (a == 1);

Assume cache A contains: a: S0, b: EOQ, cache B contains: a: S0, b: |

a=1 sfence b=1
store 1 8 -
[es) So PN 4
§b 20 m
& 5
‘s
o o
Fhi P
P ey
Py b Py
B =0 " ==

Memory Consistency
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PSO Model: Formal Spec [S192]

Definition (Partial Store Order)

0 The store order wrt. memory ( C ) is total

Va,b € adar iyj ecru (Stila] C st,[b]) V (St;[b] C Stila])

O Fenced stores in program order ( < ) are embedded into the memory order ( C )

Stila] < sfence () < St;[b] = St;[a] C St;[b]
a Stores to the same address in program order ( < ) are embedded into the memory order ( C )

sti[a] < sti[a]’ = sti[a] C sti[a]’
o Loads preceding an other operation (wrt. program order <) are embedded into the memory order ( C )

Ldi[a] < 0p;[b] = Ldi[a] £ Op;[?]
© A loadss value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(St;[a] | St;[d] :mézx ({stxla] | stila] C rd;[a]} U {st;[a] | stia] < Ld;[a]}))

& Now also stores are not guaranteed to be in order any more:

sti[a] < st;[b] # Stila] C St;[b]

~ What about sequential consistency for the whole system?

Memory Consistency Out-of-Order Execution Stores

i

Further weakening the model: O-0-O Reads

Memory Consistency Out-of-Order Execution of Loads
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TSO Model: Formal Spec [S192] Tl

Definition (Total Store Order)
o The store order wrt. memory ( C ) is total

Ya,b € adir i j €CPU C st;[a])

)

(stila] £ st,[b]) Vv (st;[b]
o Stores in program order ( < ) are embedded into the memory order ( C

sti[a] < st;[b] = st;[a] C st,[b]
0 Loads preceding an other operation (wrt. program order < ) are embedded into the memory order ( C )

Ld;[a] < Op;[b] = Ldi[a] C Op;[?]
o A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(st;[a] | st;[a] :mgx ({sty[a] | stila] C Ld;[a]} U {st;[d] | sti[a] < Ld;[a]}))

Particularly, one ordering property is not guaranteed:

stila] < 1 [b] % sti[a] C La;[b)

A Local stores may be observed earlier by local loads then from somewhere else!

33/54
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TSO in the Wild: x86

The x86 CPUs, powering desktops and servers around the world is a
common representative of a TSO Memory Model based CPU.

@ FIFO store buffers keep quite strong consistency properties
@ The major obstacle to Sequential Consistency is

Stila] < L4[b] #  Stia] C Ld[b]

» modern x86 CPUs provide the mfence instruction
» mfence orders all memory instructions:
Op; < mfence() < 0p/ = Op; Cop/

@ a fence between write and loads gives sequentially consistent CPU
behavior (and is as slow as a CPU without store buffer)

~+ use fences only when necessary

PSO Model: Formal Spec [S192]
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Definition (Partial Store Order)

0 The store order wrt. memory ( C ) is total
Va,b € adar iyj ecru (Stila] C st,[b]) V (St;[b] C Stila])
O Fenced stores in program order ( < ) are embedded into the memory order ( C )
Stilal St,—[b] = Sti[a] C St;[b]
a Stores to the same address in program order ( < ) are embedded into the memory order ( C )
sti[a] < sti[a]’ = sti[a] C sti[a]’
o Loads preceding an other operation (wrt. program order <) are embedded into the memory order ( C )
Ld;[a] < Op;[b] = Ldi[a] & Op;[b]
© A loadss value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(St;[a] | St;[d] =max ({stxla] | stila] C rd;[a]} U {st;[a] | stia] < Ld;[a]}))
& Now also stores are not guaranteed to be in order any more:
sti[a] < st;[b] # Stila] C St;[b]

~ What about sequential consistency for the whole system?

Memory Consistency Out-of-Order Execution Stores
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Happened-Before Model for Write Barriers

Thread A

= 1:

Zfencé()- s (5 == B i)
’ — .

b = 1; assert (a = ) g

Assume cache A contains: a: S0, b: EQ, cache B contains: a: S0, b: |

a=1 sfence b=1
store v ;
Da
§ b
O
& a ' .
S b . b :
P ° 7
B = ™ ° é
b:: a==

Further weakening the model: O-0-O Reads

Memory Consistency Out-of-Order Execution of Loads

i
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Relaxed Memory Order

Communication of cache updates is still costly:

@ a cache-intense computation can fill up store buffers in CPUs
~ waiting for invalidation acknoledgements may still happen

@ invalidation acknoledgements are delayed on busy caches

~ immediately acknowledge an
CPUA CPUB invalidation and apply it later
l 1 @ put each invalidate message into
‘_ks)tofge ‘_gtof;e an invalidate queue
u ler u ler @ if a MESI message needs to be
sent regarding a cache line in the
cache, ] cache< invalidate queue then wait until
[ the line is invalidated
'"&’&';'38‘ w"q‘ﬁgﬂé‘t@’ /N local loads and stores do not
I { : // l consult the invalidate queue

What about sequential
consistency?

“Wermory

Memory Consistency

Out-of-Order Execution of Loads 38/54

Happened-Before Model for Invalidate Queues T/[L[[]

Thread A Thread B

4= while (b == 0) {};
sfence () ; tG = 1)
b - 1; 'asser g

Assume cache A contains: a: S0, b: EQ, cache B contains: a: S0, b: |

a=1  sfence b=l _
A @ ad we ) wA
6@ e hd o f P
55 a S
Fb T T
o 9
T 2
gt [ @
s = 5 2
$ s -t
g (a1 % [J
5, <8 RV
&b 4, 327 i
B . e “ %
b==0 a==10
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Memory Consistency Out-of-Order Execution of Loads

RMO Model: Formal Spec [SI194] T

Definition (Relaxed Memory Order)

o Fenced memory accesses in program order ( < ) are embedded into the memory order ( C )
0Op;[a] < mfence () < Op;[b] = Op;[a] C Op;[b]
e Stores to the same address in program order ( < ) are embedded into the memory order ( C )
st[a] < st;a]” = sty[a] T st;[a]’
e Operations dependent on a load (wrt. dependence — ) are embedded in the memory order ( C )
Ld;[a] — Op;[b] = Ldi[a] C Op;[b]
o A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(st;[a] | St;la] :mgx ({stxla] | stla] C Ld;[a]} U {st;[d] | sti[a] < Ld;[a]}))

A Now we need the notion of dependence
@ Memory access to the same address:
st;la] < Ldild] =
@ Register reads are dependent on latest register writes:

sti[a] — Ld;[d]

op;la]” =max (Op; [a]" | targetreg(Op;la]’) = srcreg(0pi[B]) A Opla]’ < Omi[b]) = op;la]” —+ op,[b]
@ Stores within branched blocks are dependent on branch conditionals:
(Op;la] < sti[b]) 1 Op;la] — condbranch < st;[b] = Op;la] — St;[b]
39/54

Memory Consistency Out-of-Order Execution of Loads

Explicit Synchronization: Read Barriers

i

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value
@ need a way to establish sequential consistency between writes of other
processors and local reads
@ insert an explicit read barrier before the read access

» aread barrier marks all entries in the invalidate queue
» the next read operation is only executed once all marked invalidations have

completed
@ aread barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)

~~ match each write barrier in one process with a read barrier in another
process

41/54
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Happened-Before Model for Read Barriers

Thread A

a =1; while (b == 0) {};
sfence () ; lfence();
b =1; assert(a == 1) ;

invalidate | 4.

'\\
So
5
&
B b lfence a==

Example: The Dekker Algorithm on RMO Systems

Memory Consistency The Dekker Algorithm

Thread B

i
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Happened-Before Model for Read Barriers

Thread A

i

a = 1; while (b == 0) {};
sfence () ; lfence () ;
b =1; assert(a == 1);

b lfence a==
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Using Memory Barriers: the Dekker Algorithm U]

Mutual exclusion of two processes with busy waiting.

//flag[]
flag[0] =
flag([l]
turn

is boolean array;
false;
false;
0; // or 1

and turn is an integer

PO:

flag[0] = true;

while (flag[1]
if

== true)

(turn !'= 0) {

flag[0] = false;

while (turn != 0) {
// busy wait

}

flag[0] = true;

}

// critical section

turn = 1;
flag[0] = false;
wrs



Memory Consistency The Dekker Algorithm

Using Memory Barriers: the Dekker Algorithm T[]

Mutual exclusion of two processes with busy waiting.

//flag[] 1is boolean array; and turn is an integer

flag[0] = false;

flag[l] = false;

turn = 0; // or 1

PO: P1l:

flag[0] = true; flag[l] = true;

while (flag[l] == true) while (flag[0] == true)

if (turn != 0) { if (turn !'= 1) {
flag[0] = false; flag[1l] = false;
while (turn != 0) { while (turn != 1) {
// busy wait // busy wait

} }
flag[0] = true; flag[l] = true;

} }

// critical section // critical section

turn = 1; turn = 0;
flag[0] = false; flag[l] = false;
s

Dekker’s Algorithm and[RMO |

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

46/54

The Idea Behind Dekker

Communication via three variables:
@ flag[i]==true process P; wants to enter its critical section
@ turn==i process P; has priority when both want to enter

PO:
flag[0] = true; In process P;:
while (flag[l] == true) e if P,_, does not want to enter,
if (turn != 0) { proceed immediately to the critical
flag[0] = false; section
while (turn != 0) {
// busy wait
}
flag[0] = true;
}
// critical section
turn = 1;
flag[0] = false;

Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] =
sfence () ;
while (lfence(),
if (lfence(),
flag[0] =
sfence () ;
while (lfence(),
// busy wait
}
flag[0] =
sfence () ;

true;
@ insert a load memory

barrier 1fence () in front
of every read from
common variables

flag[l] == true)
turn != 0) {
false;

turn != 0){

true;

}
// critical section
turn = 1;
sfence () ;

flag[0] = false; sfence();

Memory Consistency The Dekker Algorithm
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Summary: Relaxed Memory Models

Highly optimized CPUs may use a relaxed memory model:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

~| ARM, PowerPC, Alpha, ia-64, even x86 (~+ SSE Write Combining)

~» memory barriers are the “lowest-level” of synchronization

Memory Consistency The Dekker Algorithm

Memory Models and Compilers

Before Optimization

int x = 0;
for (int 1=0;1<100; i++) {
x = 1;

printf ("%d", x);

Memory Consistency Wrapping Up
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Discussion

Memory barriers reside at the lowest level of synchronization primitives.

Where are they useful?
@ when blocking should not de-schedule threads

@ when several processes implement automata and coordinate their
transitions via common synchronized variables

~+ protocol implementations
~ OS provides synchronization facilities based on memory barriers

Why might they not be appropriate?
@ difficult to get right, best suited for specific well-understood algorithms
@ often synchronization with locks is as fast and easier
@ too many fences are costly if store/invalidate buffers are bottleneck

Memory Consistency Wrapping Up
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Memory Models and Compilers

Before Optimization

After Optimization
int x = 0;
. P . int x = 1;
for ilztl?—0,1<100,l++){ for (int i=0;i1<100;i++) {

printf ("%d", x); printf ("%d", x);
Cl 7 r

}
}

Standard Program Optimizations

comprises loop-invariant code motion and dead store elimination, e.g.
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Memory Models and C-Compilers

Keeping semantics |

int x = 0;

for (int i=0;1<100; i++) {
sfence();
x = 1;
printf ("%d", x);

Summary

Learning Outcomes

@ Strict Consistency

@ Happened-before Relation
© Sequential Consistency
© The MESI Cache Model
© TSO: FIFO store buffers
© PSO: store buffers

@ RMQO: invalidate queues

© Reestablishing Sequential Consistency
with memory barriers

© Dekker’s Algorithm for Mutual Exclusion

Memory Consistency Wrapping Up
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Memory Models and C-Compilers i

Keeping semantics | Keeping semantics Il

int x = 0; . .
o d (o £ s volatile int x = 0;
for (int 1=0;1<100;i++) { for (int 1-0;1<100:i++) 1
sfence () ; v - 1:
- r

x = 1;

J f " % n -
printf ("sd", x); printf ("sd", x);

}

@ Compilers may also reorder store instructions
@ Write barriers keep the compiler from reordering across

@ The specification of volatile keeps the C-Compiler from reordering
memory accesses to this address

/5
Future Many-Core Systems: NUMA i

Many-Core Machines’ Read Responses congest the bus

In that case: Intel's MESIF (Forward) to reduce communication overhead.

/N Butin general, Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus

@ the speed of the bus is limited since the electrical signal has to travel to
all participants

@ point-to-point connections are faster than a bus, but do not provide
possibility of forming consensus

Memory Consistency Wrapping Up 52/54




Overhead of NUMA Systems

Communication overhead in a NUMA system.
@ Processors in a NUMA system

may be fully or partially
connected.

@ The directory of who stores an
address is partitioned amongst

4 L processors.
Memory ' ¢ » H ’ Memory . . e
Intorface § o | Processor (<@ pocesor | 4 meie A cgche miss that cannot be satisfied

by the local memory at A:
@ A sends a retrieve request to

- P emon . .
Mooy 8| processor | processor | § _ merisos processor B owning the directory
inter acel L] l <
T T @ B tells the processor C who holds
the content
o - @ C sends data (or status) to A and

~¢— Bi-directional bus
-¢—— Unidirectional ink

sends acknowledge to B

@ B completes transmission by an
acknowledge to A

source: [Int09]

Memory Consistency Wrapping Up

i
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A low overhead coherence solution for multiprocessors with private cache memories.
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