Script generated by TTT

Title: Petter: Programmiersprachenh
(24.10.2018)

Date: Wed Oct 24 14:09:04 CEST 2018

Duration: 94:44 min

Pages: 16

The MESI Protocol: Messages i

Moving data between caches is coordinated by sending messages|[McK10]
@ Read: sent if CPU needs to read from an address

@ Read Response: when in state E or S, response
to a Read message, carries the data for the
requested address

@ /nvalidate: asks others to evict a cache line M

@ /nvalidate Acknowledge: reply indicating that a
cache line has been evicted I l [l

@ Read Invalidate: like Read + Invalidate (also
called “read with intend to modify”)

@ Wiriteback: Read Response when in state M, as a
side effect noticing main memory about
modifications to the cacheline, changing sender’s
state to S

We mostly consider messages between processors. Upon Read Invalidate, a
processor replies with Read Response/ Writeback before the Invalidate
Acknowledge is sent.

Memory Consistency The MESI Protocol

21/52

i

Processors use caches to avoid a costly round-trip to RAM for every memory
access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

The MESI Protocol: States [?]

Each cache line is in one of the states M, E, S, I

M

1]

20/52

i

Memory Consistency The MESI Protocol

MESI Example

Consider how the following code might execute:

Thread A Thread B

a =1; // // B.1
b =1; !/ // B.2

A.l
A.2

while (b == 0)
assert(a == 1);

{};

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines
@ assume that a cache line is larger than the variable itself
@ we write the content of a cache line as
» Mx: modified, with value x

» Ex: exclusive, with value x
» Sx: shared, with value x

» |:invalid
Memory Consistency The MESI Protocol 22/52

MESI Example ()

Thread A

i

Thread B

a =1; // A.1l while (b == 0) {};
B = ilg // A.2 assert (a == 1);
state- CPUA CPUB RAM | message
ment a b a b alb
A1 I I I I 010 read invalidate of a from CPU A
I I I I 010 invalidate ack. of a from CPU B
I I I I 00 read response of a=0 from RAM
By | M| PA D 191 0 reagof b from cPU B
M1 b 1010 | aad response with b=0 from RAM
B.1 M1 | | EO 0|0
A2 | M1 P BOIO 0 oadinvalidatelof b from CPU A
M1 I I EOfl0 |0 read response of b=0 from CPU B
M1]SO0 I I 11SO || O | 0 | idate ack of o from CPU B
M1 M1 0]o

MESI Example (Il)

Thread A

// B.1l
// B.2

i

23/52

Thread B

a = 1; // A.1 while (b == 0) {};
b = il // A.2 assert (a == 1);
state- CPUA CPUB RAM | message
ment | a b a | b jJa|b
B.1 M1 | M1 | [00 read of b from CPU B
M1 | M1 || 1 ' 01 0| write back of b=1 from CPU A
gz | MU ST\ T 1 STHO0 T ongof from CPU B
M1 | St S0 T e back of a=1 from GPU A
s1 |81 s1]s1]1]1
A1 S1 | 81| 81| St invalidate of & from CPU A
St st 1 |st invalidate ack. of a from CPU B
M1 | SAH | S1

Memory Consistency The MESI Protocol

// B.1
// B.2

24/52

MESI Example (1l) Tl

Thread A Thread B

a=1; // A.1 while (b == 0) {}; // B.l
b = 1; // A.2 assert(a == 1); // B.2
state- CPUA CPUB RAM | message
ment a b a b alb
B.1 |m ml |: : | |g——8| read of b from CPU B
write back of b=1 from CPU A
B.2 M1 I 0 E read of a from CPU B
M1 | S1 ST 10 111 ite back of a=1 from CPU A
S1| S S1 Ijl 1
A1 |S1 S1 S1 | St 1 | invalidate of a from CPU A
St St I St 1 1 invalidate ack. of a from CPU B
M1 | S | STl 1|1
24/52
MESI Example: Happened Before Model i
Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E
a=1 b=1
A @ p o
Sa
& be
g 2
2 o
El
&
B
Observations:
@ each memory access must complete before executing next instruction
~ add edge
25/52

Summary: MESI cache coherence protocol

Sequential consistency:

@ a characterization of well-behaved programs
@ a model for differing speed of execution

@ for fixed paths through the threads and a total order between accesses to
the same variable: executions can be illustrated by happened-before

diagram with one process per variable

@ MESI cache coherence protocol ensures SC for processors with caches

Memory Consistency The MESI Protocol

Out-of-Order Execution
AN performance problem: writes always stall

26/52

i

Thread A Thread B
a =1; // A.1 while (b == 0) {}; // B.1
b = 1; // A.2 assert(a == 1); // B.2
b=1
A o Y P
'0524 1 A==
© o it T
(o}
g of © | 'S
= 5 el ¥ 88
=] H S
3 95 |§5 £ 2
= T
< b o X o Lo o y
E4 e w7 |
B =
28152

i

Introducing Store Buffers: Out-Of-Order Stores

Memory Consistency Out-of-Order Execution Stores

Store Buffers and Total Store Ordering [?]

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer

CPUA

and trigger fetching of cache line
@ once a cache line has arrived,

CPU B apply relevant writes

|
[®H bufter
]

» today, a store buffer is always a
queue [OSS09]

store » two writes to the same location

®— puffer are not merged

|y

cache

AN sequential consistency per
CPU is violated unless
cache

Memory

before cache

Memory Consistency

~ T8O

Excursion : non-FIF
(~ Sparc/PSO)

Out-of-Order Execution Stores

I » each read checks store buffer

» on hit, return the youngest value
that is waiting to be written

buffers

27/52

i

29/52

TSO Model: Formal Spec [?] MM Happened-Before Model for Store Buffers] T

a=1; while (b == 0Y(};

0 The store order wrt. memory (C) is total
b=1 assert(a == 1);X

Vab € addr iyj ecru | (Stila] E 8t;[b]) V (St;[b] C Sti[a]) i
\/
9 Stores in program order (<) are embedded into the memory order (C) A i
Assume cache A contains: a: S0, b: EOQ, cache B contains: a: S0, b: |
stifa] < sti[b] = stifa] C st,[b] A _ a=1 _b=1_
e Loads preceding an other operation (wrt. program order <) are embedded into the memory order (C) store L 73‘;2}. N "z: —J' ® 1.'
La/ i
(3} —t ® ®
Ldi[a] < 0p;[b] = Lifa] C Op;[5] ShEC UMy A
& -
° A load’s value is determined by the latest write as observed by the local CPU ©
val(Ld;[a]) = val(St;[a] | St;[a] Fmax {stwld] | stila] C nd;[a]} U {sti[a] | sti[a] < Ld;[a]})) ;
Particularly, one ordering property is not guaranteed:
()
stila] < La;[b] # stila] C 1d;[b]) a So
& p ;- 1</
B .- b
b==0

A Local stores may be observed earlier by local loads then from somewhere else!
~~ What about sequential consistency for the whole system?
M Happened-Before Model for Write Barriers i

Explicit Synchronization: Write Barrier

a =1;
. . . S ' hile (b == B
Overtaking of messages is desirable and should not be prohibited in general. sfence(); Zs:eit Ea — ; . {}
@ store buffers render programs incorrect that assume sequential b =1;
nsisten n different CP . .
consistency betwee _d erent CPUs . . Assume cache A contains: a: S0, b: EO, cache B contains: a: SO, b: |
@ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted A et sgence b,
» a write barrier marks all current store operations in the store buffer store s >~ k
» the next store operation is only executed when all marked stores in the buffer La 5 ,
have completed Sh
@ x86 CPUs provide the sfence instruction © g S
@ a write barrier after each write gives sequentially consistent CPU g3 {'g ‘® o
behavior (and is as slow as a CPU without store buffer) ‘% 9.
i i s
~+ use (write) barriers only when necessary L2l
S b P
S i
B " h==0 = a== v

Memory Consistency Out-of-Order Execution Stores 32/52 Memory Consistency Out-of-Order Execution Stores 33/52

Introducing Invalidate Queues: O-0-O Reads

Memory Consistency Out-of-Order Execution of Loads 34/52

