lllustrating Transactions

T

Augment MESI state with extra bit 7" per cache line. CPU A: E5, CPU B: |
Script generated by TTT

Thread A T Thread B “T"

int tmp = datalidx]; int tmp

datalidx] ;

data[idx] = tmp+value; data[idx] = tmp+value;
Title: Petter: Programmiersprachen (23.11.2016) =k =
tmp=data [idx] datalidx]=tmp+value
Date: Wed Nov 23 14:39:12 CET 2016 A eo—s *—»
store L1, lec, Lo
. . <?dé;3—: i
Duration: 50:34 min g o)
Pages: 11 § 3
o S T
) -
store &1 : o B A
F Ay i Al
B tmp=data[1dx] datal[1dx]=tmp+value xend ()
Concurrency: Transactions Restricted Transactional Memory
Common Code Pattern for Mutexes i

Using HTM in order to implement mutex:

void update(int idx, int val) {
lock (mutex);

datalidx] += val;
unlock(mutex) ;

int data[100]; // shared

int mutex;

void update(int idx, int val) {
if (_xbegin()==-1) { }

if ('mutex>0) _xabort(); void lock(int mutex) {

data[idx] += val; if (_xbegin()==-1) { Hardware Lock Elision
_xend () ; if ('mutex>0) _xabort();
} else { else return;
wait(mutex) ; } wait(mutex);
datal[idx] += val; }
signal (mutex) ; void unlock(int mutex) {
} if ('mutex>0) signal(mutex);
} else _xend();
¥
@ the critical section may be executed without taking the lock (the lock is
elideq)

@ as soon as one thread conflicts, it aborts, takes the lock in the fallback
path and thereby aborts all other transactions that have read mutex

Concurrency: Transactions

Restricted Transactional Memory 29/36

Concurrency: Transactions

Hardware Transactional Memory

Hardware Lock Elision

28/ 36

30/ 36

Hardware Lock Elision [T Implementing Lock Elision M

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory
@ add a buffer for elided locks, similar to store buffer

Observation: Using HTM to implement lock elision is a common pattern oof lock ensures
~~ provide special handling in hardware: register shared/exclusive cache line state with
@ provides a way to execute a critical section without the need to CPUA IMbank | C T =1, issues XBEGIN and stores written
immediately modify the cacheline in order to acquire and release the lock value in elided lock buffer
@ requires annotations: sfore| | [elided @ r/w access to a cache line sets T
» instruction that increments the semaphore must be prefixed wit buflfer“ |00|k3 @ like RTM, applying an
» instruction setting the semaphore to 0 must be prefixed wit ! message to a cache line with 7 = 1
» these prefixes are ignored on older platforms i
p re ignored P . cache T issue analogous for
@ for a successful elision, all signal/wait operations of a lock must be I message to a modified cache line
annotated invalidatée @ g local CPU read|from the address of
queue theended Tock accesses the buffer

1 ° o on the same lock,

decrement C and, if C' = 0, clear T flags

Memory and elided locks buffer and commit to
memory
Concurrency: Transactions Hardware Lock Elision 31/36 Concurrency: Transactions Hardware Lock Elision 32/36

Transactional Memory: Summary T Transactional Memory: Summary i
Transactional memory aims to|provide atomic blocks Ilor general code: Transactional memory aims to providefatomic blocks for general code:

@ frees the user from deciding how 1o Tock dafa sfructures @ frees the user from deciding how 10 TocK data structures

@ compositional way of communicating concurrently - ay of communicating concurrently

@ can be implemented using software (locks, atomic updates) or hardware @ can be implemented using software (locks, atomic updates) or hardware

The devil lies in the details:

@ semantics of explicit HTM and STM transactions quite subtle when
mixing with non-TM (weak vs. strong isolation)

@ single-lock atomicity andl fransactional sequential consistencylsemantics
@ STM not the right tool to synchronize threads without shared variables

@ TM providing opacity (serializability) requires eager conflict detection or
lazy version management

Devils in implicit HTM:
@ RTM requires a fall-back path
@ no progress guarantee
@ HLE can be implemented in software using RTM

Concurrency: Transactions Hardware tional Memory Hardware Lock Elision 33/36 Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 33/36

TM in Practice [T TM in Practice T

Availability of TM Implementations: Availability of TM Implementations:
@ GCC can translate accesses in __transaction atomic regions into @ GCC can translate accesses in __transaction atomic regions into
libitm library calls libitm library calls
@ |SO Standard to come:|C++ Extensions for Transactional Memory @ |SO Standard to come: C++ Extensions for Transactional Memory ,
introducing synchronizedl 1 i (preview in GCC 6.1) introducing synchronized { } (preview in GCC 6.1)
@ the library 1ibitm provides different TM implementations: @ the library 1ibitm provides different TM implementations:
@ On systems with TSX, it maps atomic blocks to HTM instructions @ On systems with TSX, it maps atomic blocks to HTM instructions
© On systems without TSX and for the fallback path, it resorts to STM © On systems without TSX and for the fallback path, it resorts to STM
@ |RTM support|slowly introduced to|OpenJDK Hotspot|monitors @ RTM support slowly introduced to OpendDK Hotspot monitors

Use of hardware lock elision is limited:
@ allows to easily convert existing locks
@ pthread locks in glibc use RTM|https://lvn.net/Articles/534758/|

» allows implementation of back-off mechanisms
» HLE only special case of general lock

@ implementing monitors is challenging

» lock count and thread id may lead to conflicting accesses
» in pthreads: error conditions often not checked anymore

Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 34/36 Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 34/36

Outlook i References U

Several other principles exist for concurrent programming:

@ non-blocking message passing (the actor model
» aprogram consists of actors that send messages

¥ D. Dice, O. Shalev, and N. Shavit.
Transactional Locking II.

» each actor has a queue of incoming messages > :)
» messages can be processed and new messages can be sent In Distributed Coputing, LNCS, pages 194-208. Springer, Sept. 2006.
» special filtering of incoming messages : :
» example:| Erlang| many add-ons to existing languages ® :Ir'.rakl!lzrargt’i;ﬁel{lar:ﬁisr’nipf gncqusldﬁ?c:n
© blocking message passing (CSP, m-calculus, join-calculus) Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.
» aprocess sends a message over a channel and blocks until the recipient
accepts it Online resources on Intel HTM and GCC’s STM:
» channels end over channels (r-calculus)
» examples: Occam|, Occam*ﬂ', @ http://software.intel.com/en-us/blogs/2013/07/25/

o (immediate fun-with-intel-transactional-synchronization-extensions
» declare processes with priority and resources that each process may acquire © http://www.realworldtech. com/haswell-tm/4/
» each resource has the maximum (ceiling) priority of all processes that may Q http:
acquire it //www.open-std.org/jtcl/sc22/wg21/docs/papers/2015/n4514. pdf
» aprocess’ priority at run-time increases to the maximum of the priorities of
held resources
» the process with the maximum (run-time) priority executes

Concurrency: Transactions Hardware tional Memory Hardware Lock Elision 35/36 Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 36 /36

