Script generated by TTT

Title: Petter: Programmiersprachen (20.01.2016) “What advanced techiques are there besides
H H H H H 9!5
Date: Wed Jan 20 15:15:18 CET 2016 multiple implementation inheritance?

Duration: 45:47 min

Pages: 24
2fs0
The Adventure Game T The Adventure Game i
Door
Door Fcinterface>DoorIika‘ 5
canPass(Person p)
- LcanOpen(Personvp_)J‘“_'_m_“ - ~
.. |Short
(S ho r.tDOO r] (Locked DOOF] Q---.ca nPass(Person p)
canPass(Person p) canOpen(Person p) —
L " J -) Locked
\ >
- canOpen(Person p)
g
ﬁhortLockedDooﬂ
LcanOpen(Person p) J (ShortLockedDooﬂ /N Door implements empty methods
canPass(Person p)

canOpen(Person p) /N Doorlike must anticipate wrappers
canPass(Person p)

The Adveture Game 4130

he Advnture Game 5,30

The Wrapper i The Wrapper i

ﬁ:iIeStream } (SbcketStream]

U\?ﬁ?é()) L:,\,egsgg) J (FileStream | |(SocketStream
Vo B JREE]

SynchRW

E}cqmreLock() J @ynChRW \

releaselLock() read()

write()
acquireLock()
releaselLock()

/N Undoes specialization

/N Needs common ancestor
/N Cannot inherit from both seperately
VAN Creating new wrapping Classes duplicates code

Introduction The Wrapper 6/30

Introduction The Wrapper T/30

Classes and Methods U]

The building blocks for classes are

@ a countable set of method names A/

@ a countable set of method bodies B
Classes map names to elements from the flat lattice B (called bindings),
consisting of:

@ method bodies € B or classes € C

c ’ . . - ’ i ffsets € NT
Let’s go back to the basics of inheritance o o andetned

@ T in conflict
and the partial order | C m C T foreach m € B
Definition (Abstract Class < ()

A partial function ¢ : N — B is called abstract class.

Definition (Interface and Class)

An abstract class cis called (with pre beeing the preimage)
interface it V,ypre(e) - (n) =| L. |

(concrete) class iff Vnepre(e) - |1 C F(n)C T

T Modting nherancs 8130

T ot herance 9130

Computing with Classes and Methods T Example: Smalltalk-Inheritance T

We call the set of all maps from names to bindings the family of abstract @ is the archetype for inheritance in mainstream languages like Java or C#
classesC =N B. @ inheriting smalltalk-style establishes a reference to the parent

Several possibilites for composing maps € O C:
Definition (Smalltalk inheritance (>))

Smalltalk inheritance is the binary operator > : C x C > C, definied by
¢y b ey = {super — ¢} (¢ Uea)

@ the symmetric join L, defined componentwise:

ba ifby = Lorn ¢ pre(ci)
by ifby = L orn ¢ pre(ca)
by ifb = by

T otherwise

Example: Doors

(e1Uea)(n) =bUby = where b; = ¢;(n)

Door = {canPass — L, canOpen — L}
LockedDoor = {canOpen — 024204711} > Door
@ in contrast, the asymmetric joindefined componentwise: — {super ++ Door} I ({canOpen -+ 024204711} Door)

ci(n) |ifn € pre(c) = {super — Daor"canOpen — 024204711} |can Pass — L}

ca(n) |otherwise |

e Madeing onarance 10130

(e1 W ea)(n) {

T Wadeing narance 11130

Excursion: Beta-Inheritance T Adventure Game with Code Duplication T

In Beta-style inheritance

@ the design goal is to provide security from replacement of a method by a Door

different method.

@ methods in parents dominate methods in subclass -

@ the keyword inner explicitely delegates control to the subclass

Definition (Beta inheritance (<)) J (S hOFtDOOF] (Locked DOOF

Beta inheritance is the binary operator < : C x C — C, definied by U canPass(Person p)& UcanOpen(Person p%
= L. ya .

| c1 <1(:2|= {innerl—> cli»*ll_ltl(,'g] clp

Example (equivalent syntax):

class Person {
String name ="Axel Simon"; (ShortLOCkEdDOO
public String,\EoString(){ return name+inner.toString();}; canOpen(Person p)
) [% canPass(Person p)
class Eﬁii:{mtends Person {
publr jon Stming _toString(){ return ", Ph.D."; };
N e

Modelling Inheritance 12/30 Intreducing Mixins 15/30

Adventure Game with Mixins [T Adventure Game with Mixins L

class Door {
boolean canOpen(Person p) { return true; };

f<mixin>Locked) (Door) }boolea.n canPass(Person p) { return p.size() < 210; };
canOpen(Person p))'(‘1 canOpen(Person p mixin Locked {

canPass(Person p)

boolean canOpen(Person p){
if (!p.hasItem(key)) return false; else return super.canOpen(p);

}
1
mixin Short {
boolean canPass(Person p){
if (p.height()>1) return false; else return super.canPass(p);

-
<mixin>Short

canPass(Person p)

Y i ¥
(<mixin>ShortLocked }

| 1 class ShortDoor =| Short (Door)]
| class LockedDoor =| Locked(Door) ;|
ShortLocked =|Short o Locked; |

mixin
class ShortLockedDoor = [Short(Locked(Door))
class ShortLockedDoor2 = |[ShortLocked(Door);

Introducing Mixins 16 /30

Abstract model for Mixins i

A Mixin is a unary second order type expression. In principle it is a curried

version of the Smalltalk-style inheritance operator. In certain languages,

programmers can create such mixin operators:

Definition (Mixin)

The mixin constructor mixin : C — (C — C) is a unary class function, creating
Back to the blackboard! a unary class operator, defined by:

mizin(c) = A\x . c>x

/N Note: Mixins can also be composed o:
Example: Doors
Locked = {canOpen — 011234}
Short = {canPass — 024711}
Composed = mixin(Short) o (mixin(Locked)) = Ax . Short@Locked > x)
= Az . {super — Locked} U ({canOpen — 021234, canPass — 0xd711} > x)

Wrapper with Mixins T Mixins on Implementation Level i

E=0

class Door {

. boolean canOpen(Person p)... canPass()
ﬁ:l |€Stream\ (SOCkEtStrea mw boolean canPass(Person p)... S
read() read() > P

write() write() mixin Locked {
boolean canOpen(Person p)... Locked

}
mixin Short {
boolean canPass(Person p)...

o p R }
releaseLock() @ [@77 7 S class ShortDoor

canOpen()

mixin = Short(Door) ;
class ShortLockedDoor
(Synched FiIeStream\(SynchedSocketStrean’“ = Short(Locked (Door));
read() read() o .
Lwrite() JLW,-ite() ShortDoor d I\ non-static super-References

~+ dynamic dispatching without
precomputed virtual table

T Moceting ixns 21130
Simulating Mixins in C++ I

= new ShortLockedDoor();

e o s 20120

template <class
class SyncRW : public
public: virtual int

acquireLock() ;
“Surely multiple inheritance is powerful enough to ;Zie;::‘;izk:);
simulate mixins?” return result;
15
virtual void
acquireLock() ;
Jwrite(n);
releaseloc H
};
// ... acquireLock & releaseLock

Simulating Mixins in C++ 22/30

I s nces /30

Simulating Mixins in C++

template <class Super>
class LogOpenClose :

public: virtual void open(){

Super::open();
log("opened");
};
virtual void close(){
Super::close();

log("closed");

};

public Super {

protected: virtual void log(char*s) { ... };

I3

class MyDocument : publig]

SyncRW

LogOpenClosekDocument>> {};

Ruby

class Person
attr_accessor :size
def initialize
@size = 160
end
def hasKey
true
end
end
class Door
def canOpen (p)

true

end
def canPass(person)
person.size < 210
end
end

Simulating Mixins in C++

24/30

mm

module Short

def FanPass(p)
P- and super (p)

end
end
module Locked
def [canOpen(p)]
p.hasKey QO andlsuper(p)l
end
end

class ShortLockedDoor < Door

include Short
include Locked
end

p = Person.new
d = ShortLockedDoor.new
puts d.canPass(p)

Native Mixins in Ruby

27130

True Mixins vs. C++ Mixins

True Mixins

@ [super hatively supported

@ Mixins as Template do not
offer composite mixins

@ C++ Type system not modular

@ -~ Mixins have to stay source
code

@ Hassle-free simplified version
of multiple inheritance

C++ Mixins

@ Mixins reduced tg templated

superclasses

Can be seen as coding
pattern

T

Common properties of Mixins

el Linearization is necessary

@ -~ Exact sequence of Mixins is relevant

Ruby

class Door
def canOpen (p)
true

end
def canPass(person)
person.size < 210
end
end
module Short
def canPass(p)
p-size < 160 and super (p)
end

end
module Locked
def canOpen(p)
p-hasKey() and super(p)
end
end

Simulating Mixins in C++

hodule ShortLocked |
|include Short |
|include Locked'

end

class Person
attr_accessor
def initialize

160

:size

@size =
end
def hasKey
true
end
end

p = Person.new

d = Door.new
4.extend ShortLockedl

puts d.canPass(p)

Native Mixins in Ruby

25/30

i

28/30

Lessons Learned [T

Lessons Learned

@ Formalisms to model inheritance

© Mixins provide soft multiple inheritance

© Multiple inheritance can not compensate the lack of super reference
© Full extent of mixins only when mixins are 1st class language citizens

Native Mixins in Ruby 29/30

