Script generated by TTT

Title: Petter: Programmiersprachen (25.11.2015)
Date: Wed Nov 25 14:19:49 CET 2015
Duration: 49:43 min

Pages: 19

Implementing RTM using the Cache [

Transactional operation:
@ laugment each cache line with an extra bit 7" |

@ use a nesting counter C and a backup register set
~+ additional transaction logic:

register o|XBEGIN|increment C and, if C =0, back
CPUA [Mlbank | C up registers
@ read or write access to a cache line sets
Store TifC >0
buffer @ applying an invalidate message from
invalidate queue to a cache line with
cache T T=1 |§sues XABORT
@ observing a read message for a
[
invalidate modified cache line with T = 1 issues
u XABORT

I—I o| XABORT |clears all T flags, sets and

resfores CPU registers

@ [xcoMMIT|decrement C and, if C' = 0,
clear all T flags

Memory

Concurrency: Transactions

Restricted Transactional Memory 28/37

Protecting the Fall-Back Path i

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared
int mutex;

void update (int idx, int value) {
if(lxbezin(==—1b {
if [!'mutex>0)| Lxabort();|
datal1dx = value;
} else {
wait(mutex);
data[idx] += value;
signal (mutex);

@ fall-back path may not run in parallel with others v
o /M transactional region may not run in parallel with fall-back path

Hardware Transactional Memory Restricted Transactional Memory 27 /37

Concurrency: Transactions

Protecting the Fall-Back Path i

Use a lock to prevent the transaction from interrupting the fall-back path:

int data[100]; // shared
int mutex;

idx, iht value) {

datal[idx] +=
_xend();

mutexf'
datalidx] += value;
signal (mutex);

e fall-back path may not run in parallel with others v
o /\ transactional region may not run in parallel with fall-back path

Hardware Transactional Memory Restricted Transactional Memory 27137

Concurrency: Transactions

lllustrating Transactions [
Augment MESI state with extra bit 7" per cache line. CPU A: E5, CPU B: |
Thread A Thread B
int tmp = datal[idx]; int tmp = datalidx];
datalidx] = tmp+value; datalidx] = tmp+value;
_xend() ; _xend();
tmp=data [idx] datal[idx]=tmp+value
o NN
StOr%b st : Al
g 3 o
et O
2 S8
T o0 @ T
@ D > =
& 5 £ g
g e '
§a_o "y . % .
H i A k% S
store — : . % 3
B tmp=datalidx] datal[idx]=tmp+value _xend ()

Hardware Transactional Memory Restricted Transactional Memory 29/37

Concurrency: Transactions

Implementing RTM using the Cache [

Transactional operation:
@ augment each cache line with an extra bit T’

@ use a nesting counter C and a backup register set
~+ additional transaction logic:

register @ XBEGIN increment C' and, if C' = 0, back
CPUA [Tlbank |C up registers
@ read or write access to a cache line sets
store TifC >0
buffer @ applying an invalidate message from
invalidate queue to a cache line with
cache T T=1 |§sues XABORT
I @ observing a read message for a
invalidatée modified cache line with T' = 1 issues
ueue XABORT
] @ XABORT clears all T flags, sets C' = 0 and
M restores CPU registers
emory @ XCOMMIT decrement C and, if C' = 0,

clear all T flags

Concurrency: Transactions Restricted Transactional Memory 2837

Protecting the Fall-Back Path i

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared

int mutex;

void update(int idx, int value) {
if (_xbegin()==-1) {

if (_xabort();

datal[idx] += value;
_xend();

} else {
wait(mutex);
data[idx] += value;
signal (mutex);

@ fall-back path may not run in parallel with others v
o /M transactional region may not run in parallel with fall-back path

Hardware Transactional Memory Restricted Transactional Memory 27 /37

Concurrency: Transactions

datalidx]=tmp+value

Hardware Transactional Memory Restricted Transactional Memory 29/37

lllustrating Transactions T
Augment MESI state with extra bit 7" per cache line. CPU A: E5, CPU B: |
Thread A Thread B
int tmp = datalidx]; int tmp = datal[idx];
data[idx] = tmp+value; data[idx] = tmp+value;
_xend() ; _xend() ;
A tmp=data[idx] datalidx]=tmp+value
store et ds? £
() fail 7
5 d A A -
5 E
o @ s B
@ O S -—
O = s o
) -t T
S o F 1
gox, 5SS o air Mt
store f . bR A
; P - iy
B tmp=data[1dx] xend ()

Concurrency: Transactions

Common Code Pattern for Mutexes T
Using HTM in order to implement mutex:

void update(int idx, int wval) {
int datal[100]; // shared lock(mutex) ;
int mutex; datalidx] += wval;

void update(int idx, int val) { hnlock(mutex);l
if (_xbegin()==-1) { }
if ('mutex>0) _xabort(); void lock(int mutex) { = =
datalidx] += val; if (_xbegin()==-1) { Hardware Lock Elision
_xend () ; if ('mutex>0) _xabort();
} else { else return;
wait(mutex) ; } wait(mutex);
datal[idx] += val; ¥
signal (mutex) ; void unlock(int mutex) {
} if (!'mutex>0) signal(mutex);
} else _xend();
¥
@ the critical section may be executed without taking the lock (the lock is
elided)

@ as soon as one thread conflicts, it aborts, takes the lock in the fallback
path and thereby aborts all other transactions that have read mutex
Concurrency: Transactions Restricted Transactional Memory 30/37 Concurrency: Transactions Hardware Lock Elision 31/37

Common Code Pattern for Mutexes i Hardware Lock Elision I

Using HTM in order to implement mutex:
void update(int idx, int val) {

int data[100]; // shared lock (mutex);
int mutex; datalidx] += val;
void update(int idx, int val) { unlock (mutex) ; Observation: Using HTM to implement lock elision is a common pattern

if (_xbegin()==-1) { } ~ provide special handling in hardware: HLE
if ('mutex>0) _xabort(); void lock(int mutex) { @ provides a way to execute a critical section without the need to
data[idx] += val; if (_xbegin()==-1) { immediately modify the cacheline in order to acquire and release the lock
_xend () ; if ('mutex>0Q) _xabort(); @ requires annotations:

} else { else return; » instruction that increments the semaphore must be prefixed with XACQUIRE
wait(mutex); } wait(mutex); » instruction setting the semaphore to 0 must be prefixed with XRELEASE
datal[idx] += val; } » these prefixes are ignored on older platforms
signal(mutex) ; vo::.d unlock(int mgtex) { @ for a successful elision, all signal/wait operations of a lock must be

} if ('mutex>0) signal(mutex); annotated

} else _xend();
}

@ the critical section may be executed without taking the lock (the lock is

elided)

@ as soon as one thread conflicts, it aborts, takes the lock in the fallback
path and thereby aborts all other transactions that have read mutex
Concurrency: Transactions Hardware tional Memory Restricted Transactional Memory 30/37 Concurrency: Transactions Hardware Lock Elision 32/37

Hardware Lock Elision

Observation: Using HTM to implement lock elision is a common pattern

~= provide special handling in hardware: HLE

@ provides a way to execute a critical section without the need to
immediately modify the cacheline in order to acquire and release the lock

@ requires annotations:

» instruction that increments the semaphore must be prefixed with XACQUIRE
» instruction setting the semaphore to 0 must be prefixed with XRELEASE

» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

Concurrency: Transactions Hardware Transactional Memory

Transactional Memory: Summary

Hardware Lock Elision

Transactional memory aims to provide atomic blocks for general code:

@ frees the user from deciding how to Tock data structures
@ compositional way of communicating concurrently

32/37

i

@ can be implemented using software (locks, atomic updates) or hardware

Concurrency: Transactions

Hardware Lock Elision

34/37

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory
@ add a buffer for elided locks, similar to store buffer

@ XACQUIRE of lock ensures

shared/exclusive cache line state with

CPUA [fediter
sfore| |[elided
buffer*]| locks

]

lcache—JI T
[

invalidate
queue

I—I

value in elided lock buffer
@ r/w access to a cache line sets T

o like RTM, applying an invalidate
message to a cache line with- 7" =
issues XABORT, analogous fqr r
message to a modified cache line

@ a local CPU read from the address of
the elided lock accesses the buffer

@ on XRELEASE on the same lock,

Memory

and elided locks buffer and commit to

Concurrency: Transactions

memory
Hardvare Lock i

Transactional Memory: Summary

Transactional memory aims to provide atomic blocks for general code:
@ frees the user from deciding how to lock data structures
@ compositional way of communicating concurrently
@ can be implemented using software (locks, atomic updates) or hardware
The devil lies in the details:

@ semantics of explicit HTM and STM transactions quite subtle when
mixing with non-TM (weak vs. strong isolation)

@ single-lock atomicity and transactional sequential consistency semantics
@ STM not the right tool to synchronize threads without shared variables

@ TM providing opacity (serializability) requires eager conflict detection or
lazy version management

Devils in implicit HTM:
@ RTM requires ¢ fall-back path
@ no progress guarantee
@ HLE can be implemented in software using RTM

Concurrency: Transactions

Hardware Transactional Memory Hardware Lock Elision

C T =1, issues XBEGIN and stores written

decrement C and, if C' = 0, clear T flags

33/37

i

3437

TM in Practice \’\x [[T TM in Practice T

Availability of TM Implementations: T e Availability of TM Implementations:
@ GCC can translate accesses in|__transaction atomic|regions into @ GCC can translate accesses in __transaction atomic regions into
libitm library calls libitm library calls
@ the library 1ibitm provides different TM implementations: @ the library 1ibitm provides different TM implementations:
@ On systems with TSX, it maps atomic blocks to HTM instructions @ On systems with TSX, it maps atomic blocks to HTM instructions
© On systems without TSX and for the fallback path, it resorts to STM © On systems without TSX and for the fallback path, it resorts to STM
@ RTM support slowly introduced to OpendDK Hotspot monitors @ RTM support slowly introduced to OpendDK Hotspot monitors

Use of hardware lock elision is limited:
- XK Use rL\T ﬂ'{ @ allows to easily convert existing locks

@ pthread locks in glibc use RTMhttps://lwn.net/Articles/534758/:
» allows implementation of back-off mechanisms
» HLE only special case of general lock

@ implementing monitors is challenging

» lock count and thread id may lead to conflicting accesses
» in pthreads: error conditions often not checked anymore

Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 35/37 Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 35/37

Outlook i References U

Several other principles exist for concurrent programming:

@ non-blocking message passing (the actor model)
» aprogram consists of actors that send messages

¥ D. Dice, O. Shalev, and N. Shavit.
Transactional Locking II.

» each actor has a queue of incoming messages > :)
» messages can be processed and new messages can be sent In Distributed Coputing, LNCS, pages 194-208. Springer, Sept. 2006.
» special filtering of incoming messages @ T Harris, J. Larus, and R. Rajwar
» example: Erlang, many add-ons to existing languages T.ransact’iorllal mer:nory 2r; d elditio;‘l
Q| blocking message passing (CSP, -calculus, join-calculus) Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.
» aprocess sends a message over a channel and blocks until the recipient
accepts it Online resources on Intel HTM and GCC’s STM:
» channels can be send over channels (w-calculus) .
» examples: Occam, Occam-w, Go @ http://software.intel.com/en-us/blogs/2013/07/25/

e’ Unnnedkue)pﬁorﬂycemng fun-with-intel-transactional-synchronization-extensions

» declare processes with priority and resources that each process may acquire © http://www.realworldtech. com/haswell-tm/4/
» each resource has the maximum (ceiling) priority of all processes that may Q http:
acquire it //www.open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3341. pdf
» aprocess’ priority at run-time increases to the maximum of the priorities of
held resources
» the process with the maximum (run-time) priority executes

Concurrency: Transactions Hardware tional Memory Hardware Lock Elision 36/37 Concurrency: Transactions Hardware Transactional Memory Hardware Lock Elision 37/37

