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Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be g cache-line|or an|object| false

[ conflictd possible

Title: Petter: Programmiersprachen (18.11.2015) @ [confiict detection]
» eager: conflicts are detected when memory locations are first accessed
Date: Wed Nov 18 14:20:45 CET 2015 » validation: check occasionally that there is no conflict yet, always validate
when committing
Duration: 90:44 min » lazy: conflicts ére detected when commnfrtmg a tra.nsactlon
© reference of conflict (for non-eager conflict detection)
=) . 38 » tentative detect conflicts before transactions commit, e.g. aborting when
ages. transaction T4 reads while Tz may write the same location
» committed detect conflicts only against transactions that have committed
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Semantics of Transactions [0 Semantics of Transactions i
The goal is to use transactions to specify atomic executions. The goal is to use transactions to specify afomic executions.
Transactions are rooted in databases where they have the AC/ID properties: Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run atomicily : a transaction completes or seems not to have run
~+ we call this failure atomicity to distinguish it from atomic ~~ we call this failure atomicity to distinguish it from atomic
executions executions
consistency : each transaction transforms a consistent state to another consistency : each transaction transforms a consistent state to another
consistent state consistent state
@ a consistent state is one in which certain invariants hold @ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data @ invariants depend on the application (e.g. queue data
structure) structure)
isolation : transactions do not interfere with each other isolation : transactions do not interfere with each other
~~ not so evident with respect to non-transactional memory ~+ not so evident with respect to non-transactional memory
durability| : the effects are permanent v durability : the effects are permanent v

Transactions themselves must be serializable:

@ the result of running concurrent transactions must be identical to one
execution of them in sequence

@ serializability for transactions is insufficient to perform synchronization
between threads
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Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

i

T

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Gan we mix transactions with code accessing memory non-transactionally?

Weak- and Strong Isolation

@ a transaction that is run on an inconsistent state may generate an

@ |no conflict detectiori for non-transactional accesses
@ standard race problems as in unlocked shared accesses

inconsistent state ~ zombie transaction Thread 1
@ this is usually ok since it will be aborted eventually atomic { // Thread 2
@ but transactions may cause havoc when run on inconsi x = 42; int tmp = x;
atomic 1 preservedlinvariant: X==y }
?nz Empé - atc’mfclg ~ give programs with races the same semantics as if using a single global
Lok Mpe = ¥ * T lock for all atomic blocks
assert(tmpl-tmp2==0); y = 10; . .
@ sirong isolation: retain order between accesses to TM and non-TM

'}.
@ critical for C/C++ if, for instance, variables are pointers

Definition (opacity)

A TM system provides opacit;} if failing transactions are serializable w.r.i.
committing transactions.

~ failing transactions still sees a consistent view of memory

Transaction Semantics
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Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

~+ give programs with races the same semantics as if using a single global
lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.
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If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Transaction Semantics
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Weak- and Strong Isolation

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

3

~~ give programs with races the same semantics as if using a single global
lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.

Transaction Semantics
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~= like sequential consistency, SLA is a statement about program equivalence

Transaction Semantics
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Properties of Single-Lock Atomicity i Disadvantages of the SLA model i

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

A // Thread 1 // Thread 2
i atomic { atomic {
j while (true) {}; int tmp = x; // x in TM
k } T
@ SLA correctness is too strong in practice
B // Thread 2
tomic {
o // Thread 1 a
Observation data = 1: |int tmp = data;l
@ [SLA enforces order between TM and non-TM accesses|v” —ooic {’ Thread 1 not in atomic
» this guarantees sirong isolation between TM and non-TM accesses } if (ready) {
@ within one transactions, accesses may bere-ordered v~ | ready = 1; ) // use tmp
@ the content of non-TM memory conveys information which atomic block \ 1
has executed, even if the TM regions do not access the same memory _ i
. . ) L » under the SLA model, atomic {} acts as barrier
> SLA makes it possible to use atomic block for synchronization » intuitively, the two transactions should be independent rather than
synchronize
~+ need a weaker model for more flexible implementation of strofigsalation
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Transactional Sequential Consistency i Transactional Sequential Consistency i
How about a more permissive view of transaction semantics?

@ TM should not have the blocking behaviour of locks
~~ the programmer cannot rely on synchronization

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
~+ the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses
within each tr@sﬁﬁfﬁWlly consistent.

Definition (TSC)
The transactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent.

@ TSC is weaker: gives strong isolation, but allows parallel execution v
@ [TSC is stronger] accesses within a transaction may not be re-ordered A
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Transactional Sequential Consistency ) Translation of atomic-Blocks [
A TM system must track which shared memory locations are accessed:

@ convert every read access x from a shared variable to|ReadTx (&x) |
@ convert every write access x=e to a shared variable to|WriteTx(&x,e) |

Convert atomic blocks as follows:

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
~=+ the programmer cannot rely on synchronization

Definition (TSC) do {
The transactional sequential consistency is a model in which the accesses atomic {
within each transaction are sequentially consistent. N // code = 77 code with ReadTx and WriteTx
vomic { k = i+j; } } while [([CommitTx ()|
a._ OIIllC_ =_ 1+] ;_
N
¢————F%

m ;_--La.:‘-‘-:b_

@ TSC is weaker: gives strong isolation, but allows parallel execution v
@ TSC is stronger: accesses within a transaction may notbe re-ordered AN

~ actual implementations us ith some race free re-orderings
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T Transactional Memory for the Queue T

If a preprocessor is used, PopRight can be implemented as follows:

Concurrency: Transactions

Translation of atomic-Blocks
A TM system must track which shared memory locations are accessed:

@ convert every read access x from a shared variable to ReadTx (&x) double-ended queue: removal
@ convert every write access x=e to a shared variable to WriteTx(&x,e) int PopRight(DQueuex q) {
Convert atomic blocks as follows: QNode* oldRightNode;
. do { (QNode* rightSentinel = g->right;
atomic { StartTx() ; atomic {1
// code = // code with ReadTx and WriteTx oldRightNode = rightSentinel->left;
+ } while (!CommitTx()); if (oldRightNode==leftSentinel)
QNode* newRightNode = oldRightNode->left;
@ translation can be done using a pre-processor newRightNode->right = rightSentinel;
» determining a minimal set of memory accesses that need to be transactional rightSentinel->left = newRightNode;
requires a good static analysis }
» idea: translate all accesses to global variables and the heap as TM int val = oldRightNode—>val;
» more fine-grained control using manual translation free(oldRightNode) ;
@ an actual implementation might provide ajretry keyword | return val;
» when executing retry, the transaction aborts and re-starts }
» the transaction will again wind up at retry unless itslread setf changes o
» - block until a variable in the read-set has changed @ the transaction will abort if other threads call PopRight

similar to condition variables in monitors v~ @ if the queue is empty, it may abort if PushLeft is executed

Implementation of Software TM 12/37 Concurrency: Transactions Implementation of Software TM
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A Software TM Implementation U

A software TM implementation allocates a| transaction descriprorto store data
specific to each atomic block, for instance:

° of writes if writes have to be undone if a commit fails
® | redo-log|of wiites if writes are postponed until a commit.
®| read- and |write-set] locations accessed so far
Software Transactional Mem ory @ |read- and write-version] iime stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses /azy versioning: writes are stored in a redo-log and done on commit
@ validating confiict detection: accessing a modified address aborts
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A Software TM Implementation U Principles of TL2 i
A software TM implementation allocates a transaction descriptor to store data The idea: obtain a version tx.RV from the global clock when starting the
specific to each atomic block, for instance: transaction, the read-version, and set the versions of all written cells to a new

version on commit.

@ undo-log of writes if writes have to be undone if a commit fails . . .
undo-log A read from a field at offset of object obj is implemented as follows:

@ redo-log of writes if writes are postponed until a commit

@ read- and write-set: locations accessed so far transactional read

@ read- and write-version: time stamp when value was accessed int ReadTx(TMDesc tx, object obj, int offset) {
Consider the TL2 STM (software transactional memory) algorithm [1]: b lton Mot sifl s s sl

. . ) . : ) return tx.redolLog[&objloffset]];

@ provides gpacity: zombie transactions do not see inconsistent state } else {

@ uses lazy versioning: writes are stored in a redo-log and done on commit atomic { vl = obj.timestamp; locked = obj.sem<1; };

@ validating conflict detection: accessing a modified address aborts result = obj[offset];

: 2 = obj.timestamp;
TL2 stores a [global version countef and: v J P
b — - 'l ) if (locked || v1 '= v2 || vl > tx.RV) AbortTx(tx);
@ a read version in each object (allocate a few bytes more in each call to }
malloc, or inherit from a transaction object in e.g. Java) tx.readSet = tx.readSet.add(obj);
@ a Iedo-log in the transaction descriptor | return result;
@ alread- and a write-set in the transaction descriptor | }

@ afread-version: the version when the transaction started
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Principles of TL2 [ Committing a Transaction [

The idea: obtain a version tx.RV from the global clock when starting the A transaction can succeed if none of the read locations has changed:
transaction, the read-version, and set the versions of all written cells to a new . )

version on commit. committing a transaction

A read from a field at offset of object obj is implemented as follows: bool CommitTx(TMDesc tx) {

Foreach (e in tx.writeSet)]|

transactional read

if (1try_wait(e.obj.sem)) goto Fail;|
int ReadTx(TMDesc tx, object obj, int offset) { [WV = FetchAndAdd(&globalClock) ;|
if (&(objloffset]) in tx.redolog) { foreach (e in tx.readSet)
return tx.redoLogl&objloffset]]; if (e.obj.version > tx.RV) [goto Failﬂ
} else { foreach (e in tx.redoLog)
atomic { vl = obj.timestamp; locked = obj.sem<l; }; e.objle.offset] = e.value;
result = objloffset]; foreach (e in tx.writeSet) {
v2 = obj.timestamp; e.obj = WV; signal(e.obj.sem);
if (locked || v1 !'= v2 || vl > tx.RV) AbortTx(tx); 1
} return true;
tx.readSet = tx.readSet.add(obj); Fail:
return result; // signal all acquired semaphores
T return false;
— . }
WwriteTx is simpler: add or update the location in the redo-log.
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Properties of TL2 T General Challenges when using TM i
Opacity is guaranteed by aborting a read access with an inconsistent value: Executing atomic blocks by repeatedly trying to execute them non-atomically
StartTx ReadTx WriteTx ReadTx CommitTx creates new pr.oblen.'ls. .
—¢ ® ® ® O @ a transaction might unnecessarily be aborted
: : : write redo-log ~ the granularity of what is locked might be todlarge |
= : : validate read set » a TM implementation might impose restrictions:
memory state seems to be consistent  jncrement global clock // Thread 1 // Thread 2
atomic { // clock=12
Other observations: atomic {
@ read-only transactions just need to check that read versions are N WriteTx(&x,0) = 42; // clock=13
copgstent (no nged to .|ncrement the global clock) int r = ReadTx(&x,0);
@ writing values still requires locks } // tx.RV=12/=clock
» deadlocks are still possible @ lock-based commits can cause contention

» since other transactions can be aborted, one can preempt transactions that

» organize cells that participate in a transaction in one object
are deadlocked

» compute a new object as result of a transaction

> since lock accesses are generated, computing a lock order up-front might be » atomically replace a pointer to the old object with a pointer to the new object
possible if the old object has not changed
@ at least two memory barriers are necessary in ReadTx ~~ idea of the original STM proposal
» read version+lock, 1fence, read value, 1fence, read version @ TM system should figure out which memory locations must be logged
@ there might be contention on the |global clock @ danger of live-locks: transaction B might abort A which might abortB ...
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Integrating Non-TM Resources T Integrating Non-TM Resources [

Allowing access to other resources than memory inside an atomic block Allowing access to other resources than memory inside an atomic block
poses problems: poses problems:

@ storage management] condition variables, folatile variables @ storage management, condition variables, volatile variables,
input/output input/output

@ semantics should be as if atomic implements SLA or TSC semantics @ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following:
oCertain constructs do not make sense. Use compiler to reject
these programs.
° I/O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ Irrevocably Execute It| Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

° Re-write code to be transactional: error logging, writing data
foafle, ...
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Integrating Non-TM Resources [T

Allowing access to other resources than memory inside an atomic block
poses problems:
@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following: Hardware Transactional Memory

@| Prohibit It.|Certain constructs do not make sense. Use compiler to reject
threseprograms.

@ Execute It. /O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

@ Integrate It. Re-write code to be transactional: error logging, writing data
to afile, .. ..

~+ currently best to use TM only for memory; check if TM supports irrevocable
transactions
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Hardware Transactional Memory T Hardware Transactional Memory T

[fransactions of g timited sizejcan also be implemented in hardware: Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets @ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache: @ conflict detection is eagerusing the cache:
» additional hardware makes it cheap to perform conflict detection » additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts » if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts » if a cache-line in the write set must be written-back, the transaction aborts
~ limited by fixed hardware resources, a software backup must be provided ~~ limited by fixed hardware resources, a software backup must be provided

Two principal implementation of HTM:

@ Explicit Transactional HTM: each access is marked as transactional
» similar ICI StartTx, ReadTx, WriteTx, and CommitTx |
» requires separate transaction instructions
» -~ a transaction has to be translated differently
> & mixing transactional and non-transactional accesses is problematic

@ Implicit Transactional HTM: only the|beginiiing and end of a transaction

are marked

» same instructions can be used, hardware interprets them as transactional
» only instructions affecting memory that can be cached can be executed

> |hardware access, |@] page table changes, etc. all abort a transaction

» provides sirong isolation
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Example for HTM i Example for HTM i
AMD Advanced Synchronization Facilities (ASF): AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region @ defines a logical speculative region
@ LOCK MOV instructions provide explicit data transfer between normal @ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region memory and speculative region
@ aimed to implement larger atomic operations @ aimed to implement larger atomic operations
Intel’s TSX in Broadwell/Skylake microarchitecture (since Aug 2014): Intel's TSX in Broadwell/Skylake microarchitecture (since Aug 2014):

®| implicit transactional, can use normal instructions within transactions implicit transactional, can use normal instructions within transactions
tracks read/write set using a single transaction bit on cache lines @ tracks read/write set using a single transaction bit on cache lines
provides space for a backup of the whole CPU state (registers, ...) @ provides space for a backup of the whole CPU state (registers, ...)

* ]

o

use a simple counter to support nested transactions use a simple counter to support nested transactions
may abort at any time due to lack of resources may abort at any time due to lack of resources
aborting in an inner transaction means aborting all of them @ aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:

@ Restricted Transactional Memory (RTM)
© Hardware Lock Elision (HLE)
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Restricted Transactional Memory (Intel) T

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN

@ XABORT aborts the current transaction with an error code

@ XTEST checks if the processor is executing transactionally
The instruction XBEGIN can be implemented as a G function:

int datal[100]; // shared
void update(int idx, int value) {
if ({xbegin()==-1) {
Pata[idx] += value; |
_xend()
e

V/ transaction failed |

}

Concurrency: Transactions
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Considerations for the Fall-Back Path [T

Consider executing the following code in parallel with itself:

int data[100]; // shared
void update(int idx, int value) {
if(_xbegin()==-1) {
datal[idx] += value;

_xend();
} else {
data[idx] += value;
T
}
Problem:

@ if the fall-back code is executed, it might be interrupted by the transaction

@ the write in the fall-back path thereby overwrites the value of the
transaction

Concurrency: Transactions
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Considerations for the Fall-Back Path L

Consider executing the following code in parallel with itself:

int datal[100]; // shared
void update(int idx, int value) A
if (_xbegin()==-1) {
data[idx] += value;
_xend();
} else {
datal[idx] += value;

}

Concurrency: Transactions
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Considerations for the Fall-Back Path I

Consider executing the following code in parallel with itself:

int data[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
datal[idx] += value;

_xend();
} else {
data[idx] += value;
}
T
Problem:

@ if the fall-back code is executed, it might be interrupted by the transaction

@ the write in the fall-back path thereby overwrites the value of the
transaction

~+ need to ensure that the fall-back path is executed atomically
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Protecting the Fall-Back Path T Protecting the Fall-Back Path i

Use a lock to prevent the transaction from interrupting the fall-back path: Use a lock to prevent the transaction from interrupting the fall-back path:
int datal[100]; // shared int datal[100]; // shared
int mutex; int mutex;
void update(int idx, int value) { void update(int idx, int value) {
if (_xbegin()==-1) { if (_xbegin()==-1) {
if (fmutex>0) _xabort();
datal[idx] += value; datal[idx] += value;
_xend(); v _xend();
} else { } else {
|wait(mutex) ; | wait(mutex);
datal[idx] += valueC data[idx] += value;
| signal (mutex) ;| signal (mutex);
¥ }
} ¥
e fall-back path may not run in parallel with others v e fall-back path may not run in parallel with others v
o /\ transactional region may not run in parallel with fall-back path o /M transactional region may not run in parallel with fall-back path
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Implementing RTM using the Cache [

Transactional operation:
@ augment each cache line with an extra bit T’
@ use a nesting counter C and a backup register set
~+ additional transaction logic:

register @ XBEGIN increment C' and, if C' = 0, back
CPUA  [Tlbank |C up registers
@ read or write access to a cache line sets
Store TifC >0
buffer @ applying an invalidate message from
invalidate queue to a cache line with

T =1 issues XABORT

cache T .

I @ observing a read message for a

invalidatée modified cache line with T' = 1 issues
u XABORT
I—I @ XABORT clears all T' flags, sets C' = 0 and
M restores CPU registers
mor .
emory @ XCOMMIT decrement C' and, if C' =0,

clear all T flags
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