Script generated by TTT

Title: Petter: Programmiersprachen (14.10.2015)
Date: Wed Oct 14 14:21:05 CEST 2015
Duration: 90:18 min

Pages: 49

Overall Structure

This course is given by
@ Michael Petter: petter@in.tum.de
@ there are at least 12 lectures
@ there will be a written exam

@ there is no repeated exam in this winter or the following summer semester

Dr. Michael Petter

2/4

Programming Languages

Dr. Michael Petter

Winter term 2015

Overall Structure

This course is given by
@ Michael Petter: petter@in.tum.de
@ there are at least 12 lectures
@ there will be a written exam

?ddd TECHNISCHE UNIVERSITAT MUNCHEN m
gsgg FAKULTAT FUR INFORMATIK

1/4

@ there is no repeated exam in this winter or the following summer semester

We present selected topics that focus on current issues in the design or
implementation of programming languages:

@ concurrency
@ modularization

Dr. Michael Petter

2/a

Outline [T Administration

Lectures:
1. Concurrency @ every Wednesday at 14:15pm
@ Low-Level Concurrency, Memory Barriers @ no lectures on bank holidays: 23.12., 30.12., 6.1.

© Wait-Free Algorithms @ slides on http://www2.in.tum.de/hp/Main?nid=281

© Locks and Monitors @ lectures are recordedfnttp: //ttt. in. tun.de
@ Transactional Memory

2. Modularization

@ Method dispatching

@ Multiple Inheritance

© Mixins and Traits

© Prototype based Languages
@ Aspect Crientation

@ Generics and Templates

Dr. Michael Petter - 3/4 Dr. Michael Petter
Administration IUTE | Administration
Lectures: Lectures:
@ every Wednesday at 14:15pm @ every Wednesday at 14:15pm
@ no lectures on bank holidays: 23.12., 30.12., 6.1. @ no lectures on bank holidays: 23.12., 30.12., 6.1.
@ slides on http: //www2.in.tum.de/hp/Main?nid=281 @ slides on http://www2.in.tum.de/hp/Main?nid=281
@ |ectures are recorded http://ttt.in.tum.de @ lectures are recorded http://ttt.in.tum.de
Exercises: Exercises:
@ an exercise sheet is made available with every lecture @ an exercise sheet is made available with every lecture
@ solving the sheets is voluntary but recommended @ solving the sheets is voluntary but recommended

Tutorial sessions:
@ for now, Fridays at [10.00am in this room (H2), starting Oct. 16
@ the|exercises are meant to be completed at home |

@ solutions to these exercises will be presented
@ be there!

» if you have questions of the general kind
» if you have problems with the exercise sheet

Han d S On ! Ointro.pdf — Programming Languages

Edit View Go Bookmarks Help

Q| [15101% v

Open a Copy Ctrl+N —
Save a Copy... Ctri+S W_”m
Send To...
Open Containing Folder
Programming Languages offer a broad spectre for hands on experience! [S
o Programming projects Properties... Alt+Return 6ad spectre for hands on experiencel
. tL/1. ointro.pdf
» Earn a .3 bonus on the final exam 2. opt.pdf 2xam
» Announced in the middle of the lecture 5. vortrag.pa e feature

@ Inverted Classroom f Close Cerltw [ization part
e
» Switch over to IC for Modularization part
» Preparation of lecture at home
» Hands on experiences live at the "lecture”

N e e AL
2Py TECHNISCHE ~ UNIVERSITAT ~ MONCHEN Need for Concurrency m
§§§Z FAKULTAT FUR INFORMATIK m

Consider two processors:

i @ in 1997 the Pentium P55C had 4.5M transistors
Programming Languages @ in 2006 the /tanium 2 had 1700M transistors

~~ Intel could have built a processor with 256 Pentium cores in 2006
Concurrency: Memory Consistency

Dr. Michael Petter
Winter term 2015

Memory Consistency 1/53 Memory Consistency 2/53

Need for Concurrency T The free lunch is over [
Single processors cannot be made much faster due to physical limitations.
Consider two processors: e e
@ in 1997 the Pentium P55C had 4.5M transistors -
@ in 2006 the /tanium 2 had 1700M transistors 2000 Reates -
~ Intel could have built a processor with 256 Pentium|cores in 2006

/N However:
@ most pragrams are not inherently parallel
~+ parallelizing a program is between difficult and impossible 5 intel Single Core
@ correctly communicating between different cores is challenging
~+ correctness of concurrent communication is very hard 2002 2005 2007 2009 2011 2013

» low-level aspects: locking algorithms must be correct Year
> hlgh-le\fel aSpeCtS program may deadlock Source: D. Patterson, UC-Berkeley

@ a program on » cores runs m < n times faster

~ all effort is voided if program runs no faster
» distributing work load is application specific

&)
=
£
@
o
=
5
o
S

2007 Roadmap)

The free lunch is over [Concurrency for the Programmer T

Single processors cannot be made much faster due to physical limitations.
How is concurrency exposed in a programming language?

@ spawning of new concurrent computations
2005 Roadmap © communication between threads

IT Roadmap Semiconductors

Clock Rate (GHz)

2007 Roadmap
Intel Single Core
Intel Multicore

2003 2005 2007 2009 2011 2013
Year

Source: D. Patterson, UC-Berkeley

But Moore’s law still holds for the number of transistors:
@ they double every 18 months for the foreseeable future
@ may translate into doubling the number of cores

- |programs have to become parallel |

Concurrency for the Programmer) Communication between Cores i

We consider the concurrent execution of these functions:
How is concurrency exposed in a programming language?

. . Thread A_ Thread B
@ spawning of new concurrent computations
© communication between threads void f;:(""ld) { Volg ?arw }
L . . a - Ll while :: B
Communication can happen in many ways: b - 1; assert (2 — 1); *)

@ communication via shared memory (this lecture)
@ atomic transactions on shared memory
@ message passing

——
-

@ initial state of g and b is 0
@ A writes a before it writes b

Learning Outcomes @ B should see b go to 1 before executing the assert statement
o
°

@ |Happened-before Partial Order the assert statement should always hold /

© [Sequential Consistency | here the code is correct if the assert holds

© | The MESI Cache Model | ~+ gorrectness means: writing a 1 to a happens beforereadinga 1 inb

© [Weak Consistency Definition (Strict consistency)

© [Memory Barriers |) Read operations from location ! return values, written by the most recent write
operation to /.

Memory Consistency 4153 Memory Consistency 5/53
Strict Consistency T Strict Consistency T
Assuming foo and bar are started on two cores operating in lock-step. Assuming foo and bar are started on two cores operating in lock-step.

Then one of the following may happen: Then one of the following may happen:
fog foo X foo i Afog foo i foo i
a=f b=t a=f b-f a=t b=1 a=t Rt a=f b-f a=T b=t
men"\;: P Y memy . 1 mem y P me@ , NP , memL'r “.r mem_\ R
b? b2 b2 b2 b2 a2 b2 b2 b2 a2 b? b2 b2 b2 b2 a2 b2 b2 b2 fa?
bar [./ /[bar | WAk AR VARVER VAR Bbar vl vl oy bar [vl oybarl [

Strict Consistency [Strict Consistency T

Assuming foo and bar are started on two cores operating in lock-step. Assuming foo and bar are started on two cores operating in lock-step.
Then one of the following may happen: Then one of the following may happen:
fog __ foo R foo R foq ~—2 . foo R foo ~
mem, \ mem, V mem mem, Y mem/ \ mem
b2 b? b2 b2 b2 a? b2 b2 b2 /a? 2 b2 b? b2 b2 Ja? b2 b? b2 /a?
bar / /L % bar ;| v /7 bar, /W, W bar [;% bar ; \ [/ / ‘barf [[Nl
(
A unigue order between memory accesses is unrealistic in reality: A unigue order between memory accesses is unrealistic in reality:
@ each conditional (and loop iteration) doubles the number of possible @ each conditional (and loop iteration) doubles the number of possible
lock-step executions lock-step executions
@ processors use caches ~~ lock-step assumption is violated since cache @ processors use caches ~ lock-step assumption is violated since cache
behavior depends on data behavior depends on data

~ strict consistency is too strong to be realistic
Idea: state correctness in terms of what event may happen before another one

Memory Consistency Memory Consistency 6/53 Memory Consistency Memory Consistency 6/53

Events in a Distributed System T

A process as a series of events [Lam78]: Given a distributed system of

processes| P, Q. R, ...] each process P consists of events|ep,, ep,

The Happend-Before Relation in Distributed Systems

Memory Consistency Happened-Before Relation 7/53 Memory Consistency Happened-Before Relation 8/53

Events in a Distributed System T Excursion: Wandlore (1) U

A process as a series of events [Lam78]: Given a distributed system of Events in time are like power of wands:
processes P.Q.R, ..., each process P consists of events ep;, ep,,
Example:

@ event ep; in process P happened before ep;.

@ if ep; is an event that sends a message to Q then there is some event eg;
in Q that receives this message and ep; happened before eg;

Memory Consistency B/53 Memory Consistency 9/53
Excursion: Wandlore (1) i Excursion: Wandlore (l) T
Events in time are like power of wands: Events in time are like power of wands:

..——-"'""""'_.-“

beats

5 R

Memory Consistency Happened-Before Relation 9/53 Memory Consistency Happened-Before Relation 9/53

Excursion: Wandlore (1) T Excursion: Wandlore (1l)

Events in time are like power of wands:

More wand laws:

@ “beats” is transitive
@ “beats” is irreflexive

—-——-‘H—‘H -

beats

a ' A
g‘___—) @ implies that “beats” is asymmetric: if
L beats —
—— il - it
_--'-'-‘-’—‘

beats

hence:

then
s |
gt e m—
e ———— " I beats
_-—--.-.F—-‘
beats
~= [beats” is a strict partial order
~> the “beats” relation is transitive

Memory Consistency Happened-Before Relation 9/53 Memory Consistency

The Happened-Before Relation T The Happened-Before Relation
Definition Definition
If an event p happened before an event g then p— g. J If an event p happened before an event g then p — q.

10/53

Observe:
® — is partial (neither p — ¢ or g — p may hold)
@ — isirreflexive (p — p never holds)
® — istransitive (p—gAg—rthenp—r)
® — is asymmetric (if p — ¢ then —(q — p))
~+the — relation is a strict partial order

Memory Consistency Happened-Before Relation 11/53 Memory Consistency Happened-Before Relation

11/53

The Happened-Before Relation T Concurrency jn Process Diagrams i

Let a # b abbreviate —(a — b).

Definition Definition
If tp h d bef t g th . J

an event p happened before an event g then p— ¢ Two distinct events p and g are said to be concurrentif p /4 g and g p. ’
Observe:

@ — is partial (neither p — g or ¢ — p may hold) /?) @ ’JM

@ — isirreflexive (p — p never holds)
@ — istransitive (p >gAqg—rthenp—r)

@ — is asymmetric (if p — g then (g — p))
~ the — relation is a strict partial order

Note: a strict partial order < differs from a (non-strict) partial order < due to:

| strict partial order | non-strict partialorder |
irreflexive =(p < p) | reflexive Cr2p)

asymmetric antisymmetric
p <gimplies ~(g<p) | p=2grq=p impliﬁ@

S

® p; —ry inthe example
@ p; and g; are, in fact, concurrent since p; /> g; and g; % ps

Memory Consistency 1153 Memory Consistency 12/53

Ordering T Ordering i

Let C be a logical clock that assigns a time-stamp C(p) to each event p. Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition) Definition (Clock Condition)

Function C satisfies the clock condition if for any events p, ¢ 0 Function C satisfies the clock condition if for any events p, ¢ “
p—q = Clp)<Cg) p—q = Clp)<C(q)

For a distributed system the clock condition holds iff:
@ p: and p; are events of P and p; — p; then C(p,) < C(p;)

© pis the sending of a message by process P and g is the reception of this
message by process Q then C(p) < Cl(q)

Memory Consistency Happened-Before Relation 13/53 Memory Consistency Happened-Before Relation 13/53

Ordering T Ordering i

Let C be a logical clock that assigns a time-stamp C(p) to each event p. Let C be a logical clock that assigns a time-stamp C(p) to each event p.
Definition (Clock Condition) Definition (Clock Condition)
Function C satisfies the clock condition if for any events p. ¢ “ Function C satisfies the clock condition if for any events p, ¢ “
p—q = C(p)<C(q) p—q = C(p)<C(q)

For a distributed system the clock condition holds iff: For a distributed system the clock condition holds iff:

@ p; and p; are events of P and p; -+ p; then C(p;) < C(p;) @ p: and p; are events of P and p; — p; then C(p;) < C(p;)

@ pis the sending of a message by process P and g is the reception of this @ pis the sending of a message by process P and g is the reception of this

message by process Q then C(p) < C(q) message by process Q then C(p) < C(q)

~ a logical clock C that satisfies the clock condition describes { total order ~- a logical clock C that satisfies the clock condition describes a fotal order
a < b (with C(a) < C(b)) that embeds the strict partial order — a < b (with C(a) < C(b)) that embeds the strict partial order —

The set defined by all C that satisfy the clock condition is exactly the set of
executions possible in the system.
~ use the process model and — to define better consistency model

Memory Gonistency 15753 SRR 19753
Defining C Satisfying the Clock Condition T Defining C Satisfying the Clock Condition T
Given: Given:

P &2 o3 &4
4

€ Pr | P2 | P3| P4 e P1 | P2 | P3| P4
Cle) || -7 Cle) || 1 7 12
e q1 | 92 | 93 | 94 | 45 qe q7 € g1 | 92 | 43 | 44 | {5 e q7
Cle) |1 Cle)[[2]3]5]6 111314
e I8] I3 Fq e r Iy I3 Fa
Cle) || 3 Cle) [89|10 15

Memory Consistency Happened-Before Relation 14 /53 Memory Consistency Happened-Before Relation 14 /53

Summing up Happened-Before Relations [

We can model concurrency using processes and events:
@ there is a happened-before relation between the events of each process Sequential Consistency on Multi-Processor Machines
@ there is a happened-before relation between communicating events
@ happened-before is a strict partial order

@ a clock is a total strict order that embeds the happened-before partial
order

Memory Consistency Happened-Before Relation 15/53 Memory Consistency Sequential Consistency 16 /53

Moving Away from Strict Consistency T Definition: Sequential Consistency & ¢
Definition (Sequential Consistency Condition [Lam78]) «%
The result of any execution is the same as if i
Idea: use process diagrams to model more relaxed memory models. @ the operations of all the processors were executed in some sequential
order and
@ the operations of each individual processor appear in this sequence in
Given a path through each of the threads of a program: the order specified by its program.
® consider the actions of each thread as events of a process Sequential Consistency applied to Multiprocessor Programs:
@ use more processes to model memory Given a program with » threads,
» here: one process per variable in memory @ for fixed operation sequences p},pi{,... and pj.pi.... and pi.pt,. ..
@ -~ concisely represent some interleavings keeping the program order

© executions obey the clock condition on the p;

@ all executions have the same result
Yet, in other words:
o @ defines the execution path of each thread
@ each execution mentioned in @ is one interleaving of processes
@ © declares that the result of running the threads with these interleavings
is always the same.

Memory Consistency Sequential Consistency 17 /53 Memory Consistency Sequential Consistency 18/53

Disproving Sequential Consistency T Weakening the Model [

Sequential Consistency in Multiprocessor Programs: There is no observable change if calculations on different memory locations
Given a program with n threads, can happen in parallel.
@ for fixed operation sequences pl,p!.... and p2,p?,... and pi.p", . . Idea: model each memory location as a different process

keeping the program order
@ executions obey the clock condition on the p;

© all executions have the same result

Idea for showing that a system is not sequentially consistent:
@ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @
@ add extra processes to model other system components
@ the original order @ becomes a partial order —
@ show that total orderings C’ exist for — for which the result differs

Sequential consistency still obeyed:
@ the accesses of foo to a occurs before b
@ the first two read accesses to b are in parallel to a=1

Memory Consistency 198/53 Memory Consistency 20/53
Benefits of Sequential Consistency i Benefits of Sequential Consistency i
Benefits of the sequential consistency model: Benefits of the sequential consistency model:
@ concisely represent all interleavings that are due to variations in speed @ concisely represent all interleavings that are due to variations in speed
@ synchronization using time is uncommon for software @ synchronization using time is uncommon for software
~ a good model for correct behaviors of concurrent programs ~+ a good model for correct behaviors of concurrent programs
~+ programs results besides SC results are undesirable (they contain races) ~+ programs results besides SC results are undesirable (they contain races)

It is a realistic model for older hardware:

@ sequential consistency model suitable for concurrent processors that
acquire exclusive access to memory

@ processors can speed up computation by using caches and still maintain
sequential consistency

Memory Consistency Sequential Consistency 21/53 Memory Consistency Sequential Consistency 21/53

Benefits of Sequential Consistency [

Benefits of the sequential consistency model:
@ concisely represent all interleavings that are due to variations in speed
@ synchronization using time is uncommaon for software
~+ a good model for correct behaviors of concurrent programs
~+ programs results besides SC results are undesirable (they contain races)

Introducing Caches: The MESI Protocol
It is a realistic model for older hardware:

@ sequential consistency model suitable for concurrent processors that
acquire exclusive access to memory

@ processors can speed up computation by using caches and still maintain
sequential consistency

Not a realistic model for modern hardware with out-of-order execution:

@ what other processors see is determined by complex optimizations to
caching

~+ need to understand how caches work

Memory Consistency Sequential Consistency 21/53 Memory Consistency The MESI Protocol 22/53

