Script generated by TTT

Title:

Date:

Duration: 93:37 min
Pages: 43

Dynamic vs. Static Casting

class D : public C,
public B {
+
class A : public virtual W {
};
class B : public virtual W {
I
class C : public A , public B {
};
C c;
W+ pw = &c;
Cx pc = (Cx)pw; // Compile error

VS.
C+ pc =|dynamic_cast<C*(pw) ;

Multiple Inheritance Implementation of Multiple inheritance

Simon: Programmiersprachen (17.01.2014)

Fri Jan 17 14:15:31 CET 2014

il

_\_
( A int a A ivnlit;

tr vptr

W l,!npt—wl B intb
D intd

vptr

W int w

/N No guaranteed constant offsets
between virtual bases and
subclasses ~~ No static casting!
AN Dynamic casting makes use of
offset-to-top

Common base classes  29/35

Common base classes

class W {
int w; virtual void f(int);
virtual void g(int);
virtual void h(int);
1
class A : public virtual W {
int a; void f(int);
};
class B : public virtual W {
int b; void g(int);
}.
class C : public A, public B {
int ¢; void h(int);
}; I\ Offsets to virtual base
o AN Ambiguities
C* pc; -~ e.g. overwriting f in A and B
pc—>f(42); s
((Wx)pc)->h(42); Q% pu= (’,_)42 X<,
((A%)pc) ->£(42); C*pe = (C )P

Virtual thunks
class W { ...
virtual void g(int);
};
class A : public virtual W {..
class B : public virtual W {
int b; void g(int i){ };
};
class C
Cc;
W* pw = &c;
pw->g (42);

define void @virtualThunkTo_Bfiig(/class.B* %this, i32 %i) {

%1 = bitcast jclass.B* )this to i8%
%2 = bitcast i8% 1 to iB¥*
%3 = load iB** %2

: public A,public B{...

o JF5

(A vptr>§"'

int a
vptr

B int b\

C intc

W iR

; load W-vtable ptr

I %4 = getelementptr iB* 3, i64 -32 ;l -32 bytes is g-entry in vcalls

%5 = bitcast i8% /4 to i64#*
%6 = load i64#* U5

%8 = bitcast i8#% 7 to Jclass.B*

E voi i:g(nclass.B* /8, i ol
all id @Bi:g(icl B* %8, 132 /i)
ret void

+

Multiple Inheritance Implementation of Multiple inheritance

; load g’s vcall offset
%7 _= getelementptr i8+* /%1, iB4d /6 |; navigate to vcalloffset+ Wtop

Common base classes

30/35



Virtual Tables for Virtual Bases (~~ C++-ABI) U Virtual thunks

class W { ...
- - virtual void g(int);

A Virtual Table for a Virtual Subclass 3. vptr
gets a virtual base pointer ] class A : public virtual W {...}; A int a

’l: /_\W'/_\E class B : public virtual W { vptr
A Virtual Table for a Virtual Base %‘W ) int b; void glint 1){ }; B intb
COI’ISIS-TS of different parts: . ) RTTL class C : public A,public B{...}; C int c
@ virtual call offsets per virtual fUI’lCtIOﬂfOI"‘--«-\ Cc;

B::g
adjusting this dynamically Q g\&:@‘% W e = g W vptr
@ offset to top of an enclosing objects heap L\.V\; pu->g (42) ; \V intw 7

representation e
© typeinf pointerto an RTT| abject (at ] A WE SR e e
relevant ror us 5 o %2 = bitcast i8% Y1 to i
. , . 3 / \NC::W / %3 = load i8%* %2 ; load W-vtable ptr
0 V-’rtuaf fUnCHOﬂ POfnfef'S for reSO|Vlng A %4 = getelementptr i8# %3, i64 -32 ; -32 bytes is g-entry in vcalls
i %5 = bitcast i8* %4 to i64#*
Vlnual methOdS o %6 = 10:11 116:4* 4B ’ ; load g’s vcall offset
Virtual Base classes have virtual thunks which look up the offset to U st Aol o
adjust the this pointer to the correct value in the virtual table! cail v?;d GBEEgliclass.Bx %8, 132 %i)
}
Common base classes 3135 Common base casses 3035
- - v S5inheritance.pdf — Programming Languages -+ %
Virtual Tables for Virtual Bases (~- C++-ABI) U] e Bt View G0 Bostmarte pa(f  Proaramming Languag
4 Previous| # Next 31 (38 of 42) | Fit Page Width v
AVi | Table for a Virtual | . .
: "“?t a:’be oral tt“a Subclass Virtual Tables for Virtual Bases (~ C++-ABI) T
gets a virtual base pointer
= (AWAB 1. _
A Virtual Table for a Virtual Base %W A :hrtua.era:)II)e fora Yltrtual Subclass
. . . gets a virtual base pointer
GOHSIS"[S of different parts: | . FéTrgI —_— f&wﬁé
Qo virtual call oiffsets per lwrt#al function foru_\‘ We c | A Virtual Table for a Virtual Base %W
adjusting this dynamlcal y | %W-%E consists of different parts: RTTI
Q offset to top of an enclosing objects heap AW Q virtual call offsets per virtual function for— B::g
representation . LRI adjusting this dynamically \a. %W{:%%
@ typeinfo pointerto an RTTI object (not y AL WF @ offset to top of an enclosing objects heap AV\;
relevant for us B::W i
] . ) . ) /\C: “Wh / ar repre.sentatllon ) L #RTITI
@ virtual function pointers for resolving ] © typeinio pointer to an RTTI object (not A WE
i relevant for us B::W
virtual methods J . : : ; i /\C::Wﬁ /
. . . Q virtual function pointers for resolving
Virtual Base classes have virtual thunks which look up the offset to virtual methods -
adjust the this pointer to the correct value in the virtual table! Kill ‘ U
Virtual Base classes have virtual thunks which look up the offset to
Common hase dasses 31738 adeSt the this pointer to the correct value in the virtual table!




~ -— =—

Rechner

Vorlesungen Persénlicher
Ordner

= “Is Multiple Inheritance the holy grail of reusability?*

Bildschirm

kopfstellen [

v

ttt

==
= Learning outcomes

B“”%Sff‘?g‘m @ Identify problems of composition and decomposition

@ Understand semantics of traits

L © Separate function provision, object generation and class relations
© © Traits and existing program languages

Beamer
anschliessen

O [
Start VNC-
Kill VNC-Server Server
2/%0
Reusability = Inheritance? nm  streams U]
(FileStream ) (SynchRW ) (SocketStream )
Lrea_ld() J acquireLock() read()
write() releaselock() write()
read()
write()

@ Codesharing in Object Oriented Systems is usually inheritance-centric.

@ Inheritance itself comes in different flavours: A
» single inheritance
» multiple inheritance
» mixin inheritance

- B

@ All flavours of inheritance tackle problems of decomposition and SynchedFileStrea m\ (SvnchedSDCkftStream
composition [ 1 J L

N /

AN Duplicated Wrappers

Convenient implementation needs second order fypes, only available with
~+ Mixins or ~~ Templates

Proviems with v ance and Composabity Prvioms i nvrance and Gomposaviy Decampostion Probioms 4130




Streams

[FileStream ) (SynchRW )} (SocketStream )

read() read()
write() write()

acquireLock()
releaselock()
read()
write()

A

Fs‘.ynched FileStrea m\ (SynchedSocketStrearrq

AN Duplicated Wrappers

Caonvenient implementation needs second order types, only available with
~+ Mixins or ~ | Templates

Traits Problems with Inheritance and Composability

Decomposition Problems
Oh my god, streams!
SynchRW

acquireLock()
releaselLock()

FileStream

read()
write()

(SocketStream |

read()
write()

( A
GynchedFileStrearﬂ SynchedSocketStream

\i

A\ Inappropriate Hierarchies
Implemented methods (acquireLock/releaseLock) fo high

4/30

I

|

Decomposition Problems

Traits Problems with Inheritance and Compasability

6/30

[T

Streams modified

[FileStream ) (SynchRW ) (SocketStream )

read() read()
write() write()

acquireLock()
releaselock()

(

SynchedFile Streanﬂ (‘SynchedSocketStreanq
read() read()

\ write() write()

/N Duplicated Features

With multiple inheritance, read/write Code is essentially identical but
duplicated

Traits Problems with Inheritance and Composability

Decomposition Problems  5/30

[T

Decomposition problems

All the problems of

@ duplicated Wrappers

@ duplicated Features

@ inappropriate Hierarchies
are centered around the question

“How do | distribute functionality over a hierarchy”

~ functional decomposition

Decomposition Problems  7/30

Traits Problems with Inheritance and Composability




Are Mixins the holy grail?

Rectangle
toString() <mixin>Color
w7 tostring() |
~
<mixin>Border

~
Rectangle+Color
toString()

Rectangle+Color
+Border
toString()

MyRectangle
tostring() |

AN Fragile Hierarchies

@ Linearization overrides all identically named methods earlier in the chain
in parallel v+ Lack of control |

c| super |s not enough to sufficiently qualify inherited features, while explicit
qualification makes refactoring difficult, and glue code necessary
bk~ Dispersal of glue code |

o

Traits

Problems with Inheritance and Composability Compeosition Problems

i

8/30

The idea behind Traits

@ A lot of the problems originate from the coupling of implementation and
modelling

@ Interfaces seem to be hierarchical
@ Functionality seems to be modular

VAN Central idea

Separate Object creation from modelling hierarchies and assembling
functionality.

H

Use interfaces to design hierarchical signature propagation
Use traits as modules for assembling functionality |
Use classes as frames for entities, which can create objects

H

§

Traits A formal model for traits

10/30

[

And Multiple Inheritance?

SpyCamera | (MountablePlane ) [PrecisionGun|
shoot() fuel shoot()
equipment

CombatPlane

reload(Ammunition)

ﬁ:ameraPIane )
tﬂownload():pics

o

PoliceDrone |

—J

VAN Conflicting Features

Common base classes are shared or duplicated at class level
~+ No fine-grained specification of duplication or sharing

Traits

Problems with Inheritance and Composability Compesition Problems

Ul

9/30

Classes and methods

We will construct our model from the primitive sets of
@ a countable set of method names N
@ a countable set of method bodies B
@ a countable set of attribute names A
Values of method bodies B are extended to a flat lattice B*, with elements
@ concrete implementations
@ | undefined
@ T in conflict
and the partial order L C m = T foreachm € B

Definition (Method)
Partial function, mapping a name to a body

Definition (Method Dictionary d € D)
Total function d : N — B*,and d='(T) =0

Definition (Class ¢ € C)
Either nil or (a,d)[ ¢ith e € 4,d € D, ¢ € C

Traits A tormal model for traits

11/30



Traits MU Trait composition HILIT
Atraitte T , | ; Traits:
@ is a function t : N — B* Composing Classes from Traits:
@ has conflicts : T v 2N with conflicts(t) = {I | t(l) = T} , . / iy
- , e ,d) - " aclass,t I
o provides : T s 2V with provides(t) = t1(B) (a,det)-c with (o, d) - ¢ a class, t a composition clause
@ sel fSends : B— 2V, the set of method names used in self-sends with the overwriting operator b
@ requires : T — 2V with requires(t) = User ) self Sends(b) \ provides(t)
t(l) d{l)=_L1
i f (dt)(l) = _
.. and differs from Mixins d(l) otherwise
@ Traits are applied to a class in parallel, Mixins incrementally -
@ Trait composition is unordered, avoiding linearization problems Composition clauses are based on
@ Traits do not contain attributes, avoiding state conflicts @ frait sum: [tl + )| Hta (D) \p ta(l)
o| With traits, glue code is concentrated in particular classes I ifa—1
@ exclusion: (t—a)(l) = ,
Trait composition principles t(l) otherwise
Flat ordering | All traits have the same precedence ~- explicit disambiguation ) ifl#a
Precedence |Class methods take precedence over trait methods @ aliasing: tla = bj(l) = ¢t(b) fl=ant(a)=1
[ Flattening |Non-overridden trait methods have the same semantics as T otherwise
class methods
12/30 13130
Traits W Traits Ul
Atraitt € T Atraitt e T
@ is afunction t : N+ B* @ isafunctiont: N — B*
@ has conflicts : T~ 2N with conflicts(t) = {1 | t(I) = T} ® has conflicts : T+ 2N with conflicts(t) = {l | t(1) = T}
@ provides : T — 2V with provides(t) = t='(B) @ provides : T — 2V with provides(t) = t='(B)
@ selfSends : B — 2V tHe set of method names used in self-sends @ selfSends: B +— 2V, the set of method names used in self-sends
Oﬁ 2V with requires(t) = Userary self Sends(b) \ provides(t) ® requires : T — 2V with requires(t) = ey self Sends(b) \ provides(t)
lan_d_dﬂem_f_mml Mixins ... and differs from Mixins
@ Traits are applied to a class in parallel, Mixins incrementally @ Traits are applied to a class in parallel, Mixins incrementally
@ Trait composition is unordered, avoiding linearization problems @ Trait composition is unordered, avoiding linearization problems
@ Traits do not contain atiributes, avoiding state conflicts @ Traits do nof contain attributes, avoiding state conflicts
@ With traits, glue code is concentrated in particular classes e With traits, glue codeis conated in particular classes
Trait composition principles Trait composition principles
Flat ordering All traits have the same precedence ~- explicit disambiguation Flat ordering All traits have the same precedence ~~ explicit disambiguation
Precedence Class methods take precedence over trait methods Precedence Class methodstare edencg tvertrait [hethods
Flattening Non-overridden trait methods have the same semantics as Flattening Non-overridden trait methods have the same semantics as
class methods class methods
12/30 12/30




Trait handling

/\ Contlicts
Conflicts arise if composed traits posses methods with identical signatures

Conflict traitment

v Methods can be aliased (=)
v Methods can be excluded
V' Class Methodf overriqe trait Elhods and sort out conflicts ()

I
Decomposition A

v Duplicated Features
... can easily be factored out into unique traits.

v Inappropriate Hierarchies

Trait composition as means for reusable code frees inheritance to model
hierarchical relations.

v/ Duplicated Wrappers
Generic Wrappers can be directly modeled as traits.

Trait handling

/N Conflicts J

Conflicts arise if composed traits posses methods with identical signatures

Conflict traitment

v" Methods can be aliased (=)

Meth n be excl |
V' Class Methods override trait methods and sort out conflicts ()

Trails A formal model for traits 14/30

Ul

Composition

v Conflicting Features
Traits cannot have conflicting states, and offer conflict resolving measures like

exclusion, aliasing or overriding.

v Lack of Control and Dispersal of Glue Code

The composition entity can individually choose for each feature, which trait
has precedence or how composition is done. Glue code can be kept
completely within the composed entity.

Decompasition

Traits Traits against the identified problems

15/30

Traits Traits against the identified problems

~/Fragi|e Hierarchies
Conflicts can be resolved in the glue code. Navigational glue code is avoided.

S

=

Decomposition 16 /30



Simulating Traits in C++

template <class Super>
class SyncRW : virtual public Super {
public: virtual int read(){
acquireLock() ;
int result = Super::read();
releaseLock();
return result;
}
virtual void write(int n){
acquireLock();
Super::write(n);
relaseLock();

// ... acquireLock() & releaseLock()

Traits Traits in praclice

Simulating Traits in C++

/N What misses for full traits?

Compositional expressions are not available:
@ Aliasing
@ Exclusion

@ Precedence of class methods

@ Specifying required methods

@ Fine-grained control over duplication

@ -~ Type system not flexible enough

Traits as pattern in C++

17 /30

i

But does that matter?

Traits Traits in practice

Traits as pattern in C++

19/30

Traits Traits in practice

Traits Traits in practice

Simulating Traits in C++

template <class Super>

class LogOpenClose : virtual public Super {
public: virtual void open(){

Super::open() ;

log("opened");

};

virtual void close(){

Super::close();

log("closed");

b
protected: virtual void log(char*s) { ... };

};

template <class Super>

class LogAndSync
virtwat public LogOpenClose<Super>,
¥irtuat public SyncRW<Super>

{};

Traits as patiern in C++ 18/30

Ul

Simulating Traits in C++

template <class Super>

class LogOpenClose : virtual public Super {
public: virtual void open(){

Super::open() ;

log("opened") ;

I

virtual void close(){

Super::close();

log("closed");

+;
protected: virtual void log(char*s) { ... };

};

template <class Super>

class LogAndSync
virtual public LogOpenClose<Super>,
virtual public SyncRW<Super>

{};

Traits as pattern in C++ 18/30




Simulating Traits in C++

/N What misses for full traits?
Compositional expressions are not available:
Aliasing

@ Exclusion

@ Precedence of class methods

@ Specifying required methods
(]
(]

Fine-grained control over duplication
~~ Type system not flexible enough

But does that matter?

Traits as pattern in C++

Traits Traits in praclice

“So let’'s do a language with real traits!”

Traits in Squeak

Traits Traits in practice

19/30

21/30

[

Traits as general composition mechanism

& Central Idea

Separate class generation from hierarchy specification and functional
modelling

@ | model hierarchical relations with interfaces
(2] |compose functionality with traits
© adapt functionality to interfaces and add state via glue code in classes

‘Simplified multiple Inheritance without adverse

1
effects
Trats s patiem in Go+ 20130

Ul

Traits in Squeak

Trait named: #TRStream uses:
on: aCollection

TPositionableStream

self collection: aCollectionm.
self setToStart.

next
= self atEnd
ifTrue: [nil]
ifFalse: [self collection at: self nextPosition].

Trait named: #TSynch uses: {}
acquireLock
self semaphore wait.
releaselLock
self semaphore signal.

Trait named: #TSyncRStream uses: TSynch+(TRStream@(#readNext —-> #next)
next

| read |

self acquireLock.

read := self

self releaseLock.

- _read
T in Sk 22130




“So how about extension methods?”

Traits Traits in praclice

Extension Methods

public class Person{

public int size = 160;

public bool hasKey() { return true;?}

}

public |interface Short |[{}

public interface Locked {}

public static class DoorExtensions {

public static bool canOpen(this Locked leftHand, Person p){
return p.hasKey(Q ;

}

public static bool canPass(this Short leftHand, Person p){
return p.size<160;

}

}

public class ShortLockedDoor

public static void Main() {
ShortLockedDoor d = new ShortLockedDoor();
Console.WriteLine(d.canOpen(new Person()));

+

}

: Locked,Short {

Traits Traits in practice

Extension Methods

23/30

25/30

Extension Methods (C#)

Central Idea:
Uncouple method definitions and implementations from class bodies.

Purpose:
@ retrospectively add methods to complex types
@ especially provide implementations for interface methods

Syntax:

Qo {Bpecify a static class with static methods|

@ Explicitely specify receiver type as first first par
@ | Bring the carrier class into scope (if needed)
Q| Call extension method in infix form

eter with keyword this

Traits Traits in practice

Extension Methods

Extension Methods as Mixins

Contra Extension Methods

24/30

Ul

Pro Extension Methods | Interface declarations empty,
transparently extend arbitrary thus kind of purposeless
.| types c| Flattening not implemented
@ |for many cases offer enough Class-code is distributed over
flexibility 1 several class bodies

/N Limited scope of extension methods causes awkward errors:
public interface Locked {
public bool canOpen(Person p){
}
public static class DoorExtensions {
public static bool canOpen(this Locked leftHand, Person p){
return p.hasKey();

}
}

Traits Traits in practice

Extension Methods

26/30




Virtual Extension Methods (Java 8)

p—

'he upcoming Java 8 advances gne pace further:
Door {

canOpen(Person p);

canPass (Person p);

interface
boolean
boolean
I
interface Locked extends Door {

boolean canOpen(Person p) default { return p.hasKey(); }
-
interface Short extends Door {

boolean canPass(Person p) default { return p.size<160; }

Is
public class ShortLockedDoor implements Short, Locked, Door {
+

Implementation | /\ Flattening

Still, default methods can still not
overwrite methods from absftract

... consists in adding an interface
phase to invokevirtual's name
resolution

classes
Virtual Extension Methods 2730

i

Lessons learned

Lessons Learned

Single inheritance, multiple Inheritance and Mixins reveal shortcomings in
real world problems

@ Traits offgr fine-grained control ¢f composition of functionality

@ Native trait languages offer separation of composition of functionality from
specification of interfaces

@ Practically no language offers full traits in a usable manner

Vil Extension hthods 253

Traits: So far so...

\/good
@ Principle looks really promising
@ Concept has encouraged mainstream languages to adopt ideas
4 Squeak even has Aliasing and Exclusion implemented

/\ bad
@ Especially Squeak features one of the mos{ unconventional [DEs
@ ...and there is no command line mode! )
Virlual Extension Methods  28/30

Ul

Further reading...

® Stéphane Ducasse, Oscar Nierstrasz, Nathanael Scharli, Roel Wuyts,
nd Andrew P. Black.
Traits:|A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems (TOPLAS),
2006.

¥ Martin Odersky. Lex Spoon, and Bill Venners.
Programming in Scalg: A Comprehensive Step-by-step Guide.
Artima Incorporation, USA, 1st edition, 2008.
ISBN 0981531601, 9780981531601.

¥ Nathanael Scharli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black.
omposable units of behaviour.
European Conference on Object-Oriented Programming (ECOOP), 2003.

Traits Further materials

30/30




