Script generated by TTT

Title: Simon: Programmiersprachen (29.11.2013)
Date: Fri Nov 29 14:15:17 CET 2013

Duration: 92:24 min

Pages: 98

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

i

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert(tmpl-tmp2==0); y = 10;

} ¥
@ critical for C/C++ if, for instance, variables are pointers

Concurrency: Transactions Transaction Semantics

6/33

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

[

@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert(tmpl-tmp2==0); y = 10;

@ critical for G/C++ if, for instance, variables are pointers

Definition (opacity)

A TM system provides gpacity if failing transactions are serializable w.r.t.
committing transactions.

~= failing transactions still sees a consistent view of memory

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

6/33

Ul

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction
@ this is usually ok since it will be aborted eventually
@ but transactions may cause havoc when run on inconsistent states
atomic { ~ = (7?0 preserved invariant: x==y
int tmpl = Xx; atomic {

int tmp2 =_y; x = 10;
assert (tmpl-tmp2==0); y = 10;
b }

Concurrency: Transactions Transaction Semantics

6/33

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

I

@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert(tmpl-tmp2==0); y = 10;

¥ ¥
@ critical for C/C++ if, for instance, variables are pointers

Concurrency: Transaclions Transaction Semantics

Weak- and Strong Isolation
If guarantees are only given about memory accessed inside atomic, a TM

implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

Concurrency: Transactions Transaction Semantics

6/33

i

7/33

[

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert(tmpl-tmp2==0); y = 10;

¥ ¥
@ critical for G/C++ if, for instance, variables are pointers

Definition (opacity)

A TM system provides opacity if failing transactions are serializable w.r.t.
committing transactions.

~= failing transactions still sees a consistent view of memory

6/33

Ul

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses

Weak- and Strong Isolation

7/33

Concurrency: Transactions Transaction Semantics

I

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Weak- and Strong Isolation

// Thread 1
atomic s 4,
g o By s
X = AZ; int tmp = X;
}
7/33

i

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Weak- and Strong Isolation

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

@ -~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ sirong isolation: retain order between accesses to TM and non-TM

7/33

Concurrency: Transactions Transaction Semantics

[

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Weak- and Strong Isolation

// Thread 1

~atomic { // Thread 2
x = 42; int tmp = x;

} ’

@ - give programs with races the same semantics as if using a single
global lock for all atomic blocks
o ——

7/33

Ul

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Weak- and Strong Isolation

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

@ -~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.

~ like sequential consistency, SLA is a statement about program equivalence

Concurrency: Transactions Transaction Semantics

7/33

Properties of Single-Lock Atomicity

A
i
2
k
B
Observation:
8/33

Properties of Single-Lock Atomicity

atomic { k =i+j; }

UU ?&:—"—s.}:w:b

Observation:
@ SLA enforces order between TM and non-TM accesses v~
» this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v

@ the content of non-TM memory conveys information which atomic block
has executed, even if the TM regions do not access the Same memory

Concurrency: Transactions Transaction Semantics 8/33

Properties of Single-Lock Atomicity

m ?‘.‘“L‘-“"’:b_

Observation:
@ SLA enforces order between TM and non-TM accesses v~

Concurrency: Transactions Transaction Semantics 8/33

Properties of Single-Lock Atomicity

Observation:
@ SLA enforces order between TM and non-TM accesses v~
» this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v

@ the content of non-TM memory conveys information which atomic block
has executed, even if the TM regions do not access the same memory

» SLA makes it possible to use atomic block for synchronization

Concurrency: Transactions Transaction Semantics 8/33

I

Disadvantages of the SLA model

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {

while (true) {}; int tmp = x; // x in TM
} }

© SLA correctness is too strong in practice
ﬁ__// Thread 2

atomic {

// Thread 1 ;
data = 1- int tmp = data;
atomic {’ // Thread 1 not in atomic

if (ready) {

// use tm
ready = 1; } P
e

i

Disadvantages of the SLA model

The SLA model is simple but often too strang:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {}; int tmp = x; // x in TM
} }
@ SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1; int tmp = data;
atomic { // Thread 1 not in atomic
} if (ready) {
ready = 1; // use tmp

}

b
» under the SLA model, atomic {} acts as barrier
» intuitively, the two transactions should be independent rather than
synchronize

9/33

Concurrency: Transactions Transaction Semantics

Disadvantages of the SLA model

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {}; int tmp = x; // % in TM
} }
© SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1: int tmp = data;
atomic {’ // Thread 1 not in atomic
} if/;ready) {
. use tmp
ready = 1; }

}

» under the SLA model, atomic {} acts as barrier

Transactional Sequential Consistency

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
@ - the programmer cannot rely on synchronization

Definition (TSC)
The transactional sequential consistency is a model in which the accesses

within each transaction are sequentially consistent.

[

9/33

Concurrency: Transactions Transaction Semantics

10/33

Transactional Sequential Consistency
How about a more permissive view of transaction semantics?

@ TM should not have the blocking behaviour of locks
@ - the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent.

atomic_{ k = i+j;_}

o

A
i.

J

k

B

@ TSC is weaker: gives strong isolation, but allows parallel execution v
A

@ TSC is stronger: accesses within a transaction may notbe re-ordered A

10/33

i

Concurrency: Transaclions Transaction Semantics

Translation of atomic-Blocks
A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable to ReadTx (&x)

Implementation of Software TM 12/33

Concurrency: Transactions

Transactional Sequential Consistency

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
@ -~ the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent.

r]

bu a“"l“-““':b_

wa’}arallel execution v

@ TSC is stronger: accesses within a transaction may not be re-ordered N\

@ TSC is weaker: gives strong isolation, bu

~ actual implementations use TSC with some race free re-orderings

10/33

Ul

Translation of atomic-Blocks
A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable to ReadTx (&x)

@ convert every write access x=e to a shared variable to WriteTx(&x,e)

12/33

Concurrency: Transactions Implementation of Software TM

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable {0 ReadTx (&x)
@ convert every write access x=e to a shared variable to WriteTx(&x,e)

Convert atomic blocks as follows:

) Jdo {
atomic { StartTx();
-
(3 /7 gade // code with ReadTx and WriteTx

} while (!CommitTx());

Concurrency: Transactions

Implementation of Software TM

Transactional Memory for the Queue
If a preprocessor is used, PopRight can be implemented as follows:

double-ended queue: removal

int PopRight (DQueuex* q) {

QNode* oldRightNode;

atomic { Y.

E———
(Node* rightSentinel = q->right;
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) retry;
(QNode* newRightNode = oldRightNode->left;

newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;
}
int val = oldRightNode->val;

free(oldRightlode) ;
return val;

}

I

12/33

i

@ the transaction will abort if other threads call PopRight

Concurrency: Transactions

Implementation of Software TM

13/33

[

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable to ReadTx (&x)
@ convert every write access x=e 0 a shared variable to WriteTx(&x,e)

Convert atomic blocks as follows:

tomic { do { <
atomic
StartTx (O ;
// code — arxf L
} // code with ReadTx and WriteTx

} while ('CommitTx());

@ translation can be done using a pre-processor

» determining a minimal set of memory accesses that need to be transactional
requires a good static analysis

» idea: translate all accesses to global variables and the heap as TM
» more fine-grained control using manual translation

@ an actual implementation might provide a retxry keyword

when executing retry, the transaction aborts and re-starts

the transaction will again wind up af_retry unless its read set changes

~+ block until a variable in the read-set has changed ==

similar fo condition variables in monitors v/

v

v

v

v

12/33

Ul

Transactional Memory for the Queue

If a preprocessor is used, PopRight can be implemented as follows:

double-ended queue: removal
int-PepRight (DQueuex q) {
ONode* oldRightNode;
atomic {
" QNode# rightSentinel = g->right;
oldRightNode = rightSentinel->Ieit;
if (oldRightlode==leftSentinel) retry;
(Node* newRightNode = oldRightNode->left;

newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;
}
int val = oldRightNode->val;
free(oldRightNode);
return val;
}

@ the transaction will abort if other threads call PopRight
@ if the queue is empty, it may abort if PushLeft is executed

13/33

I

A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails

® redo-log of writes if writes are postponed until a commit

@ read- and write-set: locations accessed so far

@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:

@ provides opacity: zombie transactions do not see inconsistent state

A Software TM Implementation

Concurrency: Transactions

14/33

A Software TM Implementation T

A software TM implementation allocates a transaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and write-set: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides B_p_acity: zombie transactions do not see inconsistent state
@ uses lazy versioning: writes are stored in a redo-log and done on commit
@ eager conflict detection: a transaction aborts as soon as it conflicts

Implementation of Software TM

Concurrency: Transactions 14/33

Implementation of Software TM

A Software TM Implementation i

A software TM implementation allocates a transaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and wrife-set: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses lazy versioning: writes are stored in a redo-log and done on commit

Concurrency: Transactions Implementation of Software TM

14/33

A Software TM Implementation T

A software TM implementation allocates a transaction descripior to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and wrife-set: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses /azy versioning: writes are stored in a redo-log and done on commit
gager’&onﬂict detection: a transaction aborts as soon as it conflicts
TL2 stores a global version counter and:

@ aread version in each gbject (allocate a few bytes more in each call to
malloc, or inherit from a fransaction object in e.g. Java)

@ aredo-log in the transaction descriptor
@ a read- and a write-set in the transaction descriptor
@ aread-version: the version when the transaction started

Concurrency: Transactions Implementation of Software TM

14/33

Principles of TL2

U
The idea: obtain a versionltg.ﬁv from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit. T——
A read from a field at offset of object obj is implemented as follows:

transactional read
int ReadTx sc tx, object obj, int offset) {
if (&(objloffset]) in tx.redolog) {
—— e e ——— ——
return tx.redoLog[&objloffset]];
} else {

tomic {_yl = obj.timestamp; locked = obj.sem<1; };
result = obj[offset];

= obj.timestamp; 7**%?

if (locked || vl !'= v2 || vl > tx.RV) AbortTx(tx);

) —

tx.readSet = tx.readSet.add(ob}?pﬁkuf)

return result;
T

—

Concurrency: Transactions

Implementation of Software TM 15/33

i

Committing a Transaction
A transaction can succeed if none of the read locations has changed:

committing a transaction
bool CommitTx(TMDesc tx) {

foreach (e in tx.writeSet) ~7

if (ltry_wait(e.obj.sem)) goto Fail;
WV = FetchAngaddf&ElobalClock);
foreach (e in tx.readSet)

if (e.obj.version > tx.RV) goto Fail;
S 00] - Ve 807
foreach (e in tx.redolog

V= C

e

e.objle.offset] = e.value; ¢ Cl’ >C
foreach (e in tx.writeSet) { -
e.obj = WV; signal(e.obj.sem); (,JMJJY(&?(S)
T bmnsls M
return true; T W = '
Fail:

// signal all acquired
return false;

}

emaphores

Lj.m’n =C"

Concurrency: Transactions

Implementation of Software TM 16/33

Principles of TL2

UL
The idea: obtain a version tx .RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.
A read from a field at offset of object obj is implemented as follows:

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objloffset]) in tx.redalgg) {
return tx.redoLog[&objloffset]];
¥ else {
atomic { vl = obj.timestamp; locked = obj.sem<l; I};
result = obj[offset];
v2 = obj.timestamp;
if (locked || vi !'= v2 || vl > tx.RV) AbortTx(tx);
}
tx.readSet = tx.readSet.add(obj);
return result;

}
WriteTx is simpler: add or update the location in the redo-log.
Concurrency: Transactions Implementation of Software TM 15/33
Properties of TL2 T

Opacity is guaranteed by aborting a read access with an inconsistent value:
StartTx ReadTx WriteTx ReadTx

R e
r memory state see?\to be consistent| Ylhc\r

Other observations:

CommitTx

e

Concurrency: Transactions Implementation of Software TM 17733

Properties of TL2 U

Opacity is guaranteed by aborting a read access with an inconsistent value:

tarth) ReadTx WriteTx ReadTx CommitTx
{-—t - - - R e

5 i : write redo-log
validate read set

increment global clock

s

memory state seems to be consistent

Other observations:

@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)

Implementation of Software TM 17/33

Concurrency: Transactions

Properties of TL2 T
Opacity is guaranteed by aborting a read access with an inconsistent value:
StartTx ReadTx WriteTx ReadTx CommitTx
—p = o c R
3 i ; write redo-log
: , : validate read set

memory state seems to be consistent increment global clock
Other observations:
@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still requires locks

» deadlocks are still possible
» since other transactions can be aborted, one can preempt transactions that
are deadlocked

> ﬂ&cﬂcﬂﬁwenermed computing a lock order up-front might be

possible

Implementation of Software TM 17/33

Concurrency: Transactions

Properties of TL2 HLT

Opacity is guaranteed by aborting a read access with an inconsistent value:

CommitTx
_—
: write redo-log

validate read set
mcrement global clock

StartTx ReadTx WriteTx ReadTx
—$ & @ o)

[
i] '
L

memory state seems to be consistent

Other observations:

@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)

@ writing values still requires locks

17/33
Properties of TL2 T
Opacity is guaranteed by aborting a read access with an inconsistent value:
StartTx ReadTx WriteTx ReadTx CommitTx
— o o = R
3 i ; write redo-log
: . : validate read set

memory state seems to be consistent increment global clock
Other observations:
@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still requires locks

» deadlocks are still possible

» since other transactions can be aborted, one can preempt transactions that
are deadlocked

» since lock accesses are generated, computing a lock order up-front might be
possible

@ at least two memory barriers are necessary in ReadTx
e ——

17/33

Concurrency: Transactions Implementation of Software TM

Properties of TL2

StartTx ReadTx WriteTx ReadTx CommitTx
—p - o o A S
P i i write redo-log
. , ' validate read set

memory state seems to be consistent jcrement global clock

Other observations:
@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still requires locks
» deadlocks are still possible

» since other transactions can be aborted, one can preempt transactions that

are deadlocked

» since lock accesses are generated, computing a lock order up-front might be

possible

@ at least two memory barriers are necessary in BeadTx
» read version+lock, 1fence, read value, 1fence, read version
e —— S S

Implementation of Software TM

Concurrency: Transactions

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

Implementation of Software TM

Concurrency: Transactions

I

Opacity is guaranteed by aborting a read access with an inconsistent value:

17/33

18/33

Properties of TL2 HLT

Opacity is guaranteed by aborting a read access with an inconsistent value:

StartTx ReadTx WriteTx ReadTx CommitTx
wommitlx
; o .- o R A R T
P ‘_ ; write redo-log
f , validate read set

memory state seems to be consistent increment global clock
Other observations:
@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still requires locks

» deadlocks are still possible
» since other transactions can be aborted, one can preempt transactions that

are deadlocked
» since lock accesses are generated, computing a lock order up-front might be
possible
@ at least two memory barriers are necessary in ReadTx
» read version+lock, 1fence, read value, 1fence, read version

@ there might be contention on the global clock

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted
» the granularity of what is locked might be too large

17/33

18/33

Concurrency: Transactions Implementation of Software TM

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
_atemic—{ ——atOmic 1
// % is shared
x = 42;
#—}_—-—

int r = ReadTx(&x,0);
e ———
—F

Concurrency: Transactions

Implementation of Software TM 18/33

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { atomic {
// % is shared
x = 42;
}

int r = ReadTx(&x,0);
}
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction
» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed

-+ idea of the original STM proposal

v

Concurrency: Transactions

Implementation of Software TM 18/33

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { atomic {
// x is shared
x = 42;
}

int r = ReadTx(&x,0);
}
@ lock-based commits can cause contention

Concurrency: Transactions Implementation of Software TM

18/33

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { atomic {
// x is shared
x = 42;
}

int r = ReadTx(&x,0);
}
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction
» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed
» -~ idea of the original STM proposal

@ TM system should figure out which memory locations must be logged

Concurrency: Transactions Implementation of Software TM

18/33

General Challenges when using TM MU Integrating Non-TM Resources T
Executing atomic blocks by repeatedly trying to executing them Allowing access to other resources than memory inside an atomic block
non-atomically creates new problems: poses problems:
@ a transaction mfght unnegessanly bg aborted @ storage management, condition variables, volatile variables,
» the granularity of what is locked might be too large input/output —
» a TM implementation might impose restrictions: ——)) .
// Thread 1 // Thread 2 @ semantics should be as if atomic implements SLA or TSC semantics
atomic { atomic { S ——————__
// % is shared
x = 42;
}
int r = ReadTx(&x,0);
T
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction
» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed
» ~- idea of the original STM proposal
@ TM system should figure out which memory locations must be logged
@ danger of live-locks:_transaction B might abort A which might abortB . ..
Concurrency: Transaclions Implementation of Software TM 18/33 19/33
Integrating Non-TM Resources TUMM Integrating Non-TM Resources T
Allowing access to other resources than memory inside an atomic block Allowing access to other resources than memory inside an atomic block
poses problems: poses problems:
@ storage management, condition variables, volatile variables, @ storage management, condition variables, volatile variables,
input/output input/output
@ semantics should be as if atomic implements SLA or TSC semantics @ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following: Usual choice is one of the following:
@ _Prohibit It. Gertain constructs do not make sense. Use compiler to reject @ Prohibit It. Gertain constructs do not make sense. Use compiler to reject
these programs. these programs.
@ Execute It. /0 operations may only happen in some runs (e.g. file writes @ Execute It. /0 operations may only happen in some runs (e.qg. file writes
usually go to a buffer). Abort if I/O happens. usually go to a buffer). Abort if I/O happens.
@ Irrevocably Execute It. Universal way to deal with operations that cannot @ /rrevocably Execute It. Universal way to deal with operations that cannot
“be undone: enforce that this transaction terminates (possibly before be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict. starting) by making all other transactions conflict.
@ _Integrate It. Re-write code to be transactional: error logging, writing data @ Integrate It. Re-write code to be transactional: error logging, writing data
to afile, to afile,
~~ currently best to use TM only for memory; check if TM supports irrevocable
transactions
Concurrency: Transactions Implementation of Software TM 19/33 19/33

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:

@ additional hardware to track read- and write-sets

Concurrency: Transactions Hardware Transactional Memory

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:

@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection

Concurrency: Transactions Hardware Transactional Memory

20/33

20/33

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:

Concurrency: Transactions Hardware Transactional Memory

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts

Concurrency: Transactions Hardware Transactional Memory

20/33

20/33

I

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eagerusing the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts

~ limited by fixed hardware resources, a software backup must be provided

Concurrency: Transaclions Hardware Transactional Memory

20/33

i

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~= |limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx

20/33

Concurrency: Transactions Hardware Transactional Memory

[

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eagerusing the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:

[_—
Concurrency: Transactions Hardware Transactional Memory 20/33

Ul

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts

~= limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions
» ~~ a transaction has to be translated differently
AN mixing transactional and non-transactional accesses is problematic
© Implicit Transactional HTM: only the beginning and end of a transaction

are marked
20/33

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets

@ conflict detection is eagerusing the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx

» requires separate transaction instructions
» -~ g transaction has to be translated differently

VAN mixing transactional and non-transactional accesses is problematic
© Implicit Transactional HTM: only the beginning and end of a transaction

are marked
» same instructions can be used, hardware interprets them as transactional

Concurrency: Transaclions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region
@_LOCK MOV instructions provide explicit data transfer between

memory and speculative region

normal

Concurrency: Transactions Hardware Transactional Memory

I

20/33

21/33

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

Concurrency: Transactions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region
@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region
@ aimed to implement larger atomic operations

Concurrency: Transactions Hardware Transactional Memory

21/33

Ul

21/33

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (since Sep 2013):
——————— g —

Concurrency: Transaclions Hardware Transactional Memory

21/33

Example for HTM [

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (since Sep 2013):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)

21/33

Concurrency: Transactions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (since Sep 2013):
@ implicit fransactional, can use normal instructions within transactions

e —— —_—————
Concurrency: Transactions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel’s Haswell microarchitecture (since Sep 2013):
@ implicit fransactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions

Concurrency: Transactions Hardware Transactional Memory

21/33

Ul

21/33

Example for HTM M Example for HTM HLT

AMD Advanced Synchronization Facilities (ASF): AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region @ defines a logical speculative region
@ LOCK Mav instructions provide explicit data transfer between normal @ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region memory and speculative region
@ aimed to implement larger atomic operations @ aimed to implement larger atomic operations
Intel’s Haswell microarchitecture (since Sep 2013): Intel's Haswell microarchitecture (since Sep 2013):
@ mplicit transactional, can use normal instructions within transactions @ /mplicit transactional, can use normal instructions within transactions

@ tracks read/write set using a single fransaction bit on cache lines @ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...) @ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions @ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources @ may abort at any time due to lack of resources

@ aborting in an inner transaction means aborting all of them

21/33 /33
Example for HTM MM Restricted Transactional Memory (Intel) JL
AMD Advanced Synchronization Facilities (ASF): Provides new instructions XBEGIN, XEND, XABORT, and XTEST:
@ defines a logical speculative region @ XBEGIN takes an instruction address where execution continues if the

@ LOCK MOV instructions provide explicit data transfer between normal transaction aborts

memory and speculative region
@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (since Sep 2013):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources
@ aborting in aerr_tr@ggglign means aborting all of them

Intel provides two software interfaces to TM:

@ Restricted Transactional Memory KM HT A
© Hardware Lock Elision HLE

Concurrency: Transactions Hardware Transactional Memory 21/33 Concurrency: Transactions Hardware Transactional Memory 22/33

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal”
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (since Sep 2013):
@ mplicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources
@ aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:

@ Restricted Transactional Memory
@ Hardware Lock Elision

Concurrency: Transaclions Hardware Transactional Memory

Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN

H ot

Concurrency: Transactions Hardware Transactional Memory

I

21/33

i

22/33

Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

Concurrency: Transactions Hardware Transactional Memory

Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:
@ XBEGIN-takes-an instruction address where execution continues if the
transaction aborts
@ XEND commits the transaction started by the last XBEGIN
@ XABORT aborts the current transaction with an error code
@ XTEST checks if the processor is executing transactionally
The instruction XBEGIN can be implemented as a C function:

int data[100}+-+#L4d;aredt:)

void update(int idx, int value) {
if (_xbegin()==-1) {
datalidx] += value;
_xend();
} else {
// transaction failed
}
}

~+ user must provide fall-back code

[

22/33

Ul

22/33

Considerations for the Fall-Back Path

Consider executing the following code in parallel with itself:

int data[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
data[idx] += value;

_xend();
} else {
datalidx] += value;
}
}
Problem:
@ if the fall-back code is executed, it might be interrupted by the transaction
@ the write in the fall-back path thereb ' h
transaction
p———
= TEE

Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared

int mutex;

void update(int idx, int value) {
if(_xbegin()==-1) {

datalidzl += value;
i’{xend() ;

else {

wait(mutex) ;

datalidx += value]
signal (mutex);
¥

@ fall-back path may not run in parallel with others v
o /\ transactional region may not run in parallel with fall-back path

Concurrency: Transactions Hardware Transactional Memory 24/33

i

Considerations for the Fall-Back Path

Consider executing the following code in parallel with itself:

int datal[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) { y {om)
datalidx] += value’ |

_xend(); fPV§*~ﬂgvl
} else { c ~ﬁg“)

datal[idx] += value;
} ,147~‘(4a)
}

Problem:
@ if the fall-back code is executed, it might be interrupted by the transaction

@ the write in the fall-back path thereby overwrites the value of the
transaction

~+ need to ensure that the fall-back path is executed atomically

——

Concurrency: Transactions Hardware Transactional Memory 23/33

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’

Concurrency: Transactions Hardware Transactional Memory 25/33

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit 7'

Concurrency: Transaclions Hardware Transactional Memory 25/33

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit 7’
@ use a nesting counter C' and a backup register set
~+ additional transaction logic:

register @ XBEGIN increment C' and, if C' = 0, back
CPUA [Tba c up registers
@ read or write access to a cache line sets
store TifEC >0
@ buffer @ applying an invalidate message from
| invalidate queue to a cache line with
M cacke T 7 T'=1 |§sues XABORT
T @ observing a read message for a
invalidate modified cache line with T' = 1 issues
C}UGUG XABORT
\Memory
Concurrency: Transactions Hardware Transactional Memory 25/33

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit T
@ use a nesting counter C and a backup register set
~~ additional transaction logic:

register @ XBEGIN increment C' and, if C' = 0, back
CPUA [Tbank |C up registers

@ read or write access to a cache line sets

®— puffer
cacf(é T ——
1
inMalidate
qtieue
Memory
25133

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’
@ use a nesting counter ' and a backup register set
~+ additional transaction logic:

register @ XBEGIN increment C' and, if C' = 0, back
CPUA [Tbank |GC up registers
@ read or write access to a cache line sets
-~ siore TifEC >0
buffer @ applying an invalidate message from
l invalidate queue to a cache line with
cache T =1 |.ssues XABORT
l @ observing a read message for a
invalidate modified cache line with T = 1 issues
queue XABORT
I—I @ XABORT clears alLT flags, sets C' =0 and
restores CPU registers
Memory

Concurrency: Transactions Hardware Transactional Memory 25/33

Implementing RTM using the Cache TUTM Miustrating Transactions T
Transactional operation: Augment MESI state with extra bit 7" per cache line. CPU A: E5, CPU B: |
@ augment each cache line with an extra bit 7'
@ use a nesting counter C' and a backup register set Uil Thread B
~~ additional transaction logic: int tmp = datalidx]; int tmp = datalidx];
| [register @ XBEGIN increment C' and, if C = 0, back datalidx] = tmp+value; datalidx] = tmp+value;
CPUA bank | C up registers _xend(); _xend();
t ® read or wite access o a cache line sefs tapedataliax] datalidx]taprvaiue
sfore *——» s
®— buffer e applying an invalidate message from .- —
l invalidate queue to a cache line with
cache T T =1 issues XABORT
| @ observing a read message for a
invalidate modified cache line with T' = 1 issues
queue XABORT
] @ XABORT clears all T flags, sets C' = 0 and tT:
" restores CPU registers : re ':iTE + .
emory ® XCOMMIT decrement C and, if C = 0, 7 * 7y
clear all I flags B tmp=datalidx] data[idx]=tmp+value —xend ()

25/33 2%/33
Common Code Pattern for Mutexes WM Hardware Lock Elision)
Using HTM in order to implement mutex: Observation: Using HTM to implement lock elision is a common pattern

void update(int idx, int val) { ~= provide special handling in hardware: HLE
nt data[%oo] ; // shared I lock (’f‘utex)i _ @ provides a way to execute a critical section without the overhead of the
int mutex; _ f datalidx] += val; atomic updates necessary to acquire and release the lock
void update(int idx, int value) { | unlock(mutex);
if (_xbegin()==-1) { }
if (mutex>0) _xabort(); void lock(int mutex) {
T datal[idx] += value; if (_xbegin()==-1)
_xend(); if (_r[_l_l_l_tex>0) _xabort();
} else { else return;
wait(mutex) ; wait (mutex) ;
[data[idx += value] }
signal{mutex); void u ogrlgﬁ,'nt mutex) {
} if?}m-w}GQ signal (mutex) ;
} else _xend();
}
@ the critical section may be executed with an elided lock
@ as soon as one thread conflicts, the mutex will be taken, thereby aborting
all other transactions that have read mutex
27/33 2/33

I

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

Concurrency: Transaclions Hardware Transactional Memory

28/33

i

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:
» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms
@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as O (“taken”)

28/33

Concurrency: Transactions Hardware Transactional Memory

[

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~= provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:
» instruction setting the semaphore to 0 must be prefixed with XACQUIRE

» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be

annotated
28133

Ul

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~ provide special handling in hardware: HLE

@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)

’--—-__-—__-—_-—

28/33

Concurrency: Transactions Hardware Transactional Memory

I

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:
» instruction setting the semaphore to 0 must be prefixed with XACQUIRE

» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

the memory location of the lock is locally visible as 0 (“taken”)
other processor see the lock as 1 (“not taken”)

only a finite number of locks can be elided

all but one elided lock may abort ~

Concurrency: Transaclions Hardware Transactional Memory

28/33

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

register shared/exclusive cache line state,
CPUA — bank C issues XBEGIN and stores written value
in elided lock buffer
store] [el
Ml |061%%:

cache T

invalidate
queue

I—I

Memory

Concurrency: Transactions Hardware Transactional Memory

29/33

[

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~= provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE

» these prefixes-atg ignored on older platforms
n, all signal/wait operations of a lock must be

@ for a succ
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)

@ other processor see the lock as 1 (“hot taken”)

@ only a finite number of locks can be elided

@ all but one elided lock may abort ~~

» progress guarantee since lock is taken on abort
» no back up path is required

Concurrency: Transactions Hardware Transactional Memory

28/33

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

register shared/exclusive cache line state,
CPUA Hpank |C issues XBEGIN and stores written value
in elided lock buffer
Stote] elidead @ r/w access to a cache line sets T'
7 locks @ applying an invalidate message from

invalidate queue to an address in the
elided lock buffer issues XABORT

cache T

invalidate
gueue

I—I

Memory

Concurrency: Transactions Hardware Transactional Memory

29/33

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

register shared/exclusive cache line state,
CPUA Hpank |C issues XBEGIN and stores written value
in elided lock buffer
Stote| [elided @ r/w access to a cache line sets T’
7 locks @ applying an invalidate message from

invalidate queue to an address in the
elided lock buffer issues XABORT

cache T -
I @ a read message for a modified cache
invalidate line or an inyalidate message makes the
queue transaction irrevocable
Memory
20/33
References [l

¥ D. Dice, O. Shalev, and N. Shavit.
Transactional Locking Il.
In Distributed Coputing, LNCS, pages 194—-208. Springer, Sept. 2006.

¥ T Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.

Online blog entries on Intel HTM:

© nhttp://software.intel.com/en-us/blogs/2013/07/25/
fun-with-intel-transactional-synchronization-extensions

Q http://www.realworldtech.com/haswell-tm/4/

33/33

Concurrency: Transactions Hardware Transactional Memory

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

e—audura buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

register shared/exclusive cache line state,
CPUA bank |C issues XBEGIN and stores written value
—_—— in elided lock buffer
cfnlro a!,inh @ r/w accessto a cache line sets T
buffe* locks @ applying an invalidate message fram
invalidate queue to an address in the
elided lock buffer issues XABORT
cache T o »
I @ a read message for a modified cache
invalidate line or an fnya!idate message makes the
queue transaction irrevocable
I—| @ if irrevocable, clear all T flags, set C =0
and move elided buffer to store buffer
Memory

29/33

