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Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o« of a relation o

Definition (transitive closure)

Let o C X x X be a relation. Its transitive closure is o™ = | J,, o* where

O'D = a

ot = {{zy,23) | Fxo € X . (w1, m2) € 0° A (w2, 73) € 0*}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« C L x L such that l@ iff I € A(p) and the statement at p is of the
form wait(1’) or monitor _enter(1’). Define the strict lock.order <t
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Definition (lock sets) J

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be partially ordere

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acqUired” state at program point p.

We require the transitive closure o= of a relation o

Definition (transitive closure)
Let o € X x X be a relation. Its transitive closure is o™ = [, " where

JO = J

O'i+1 = {(1:1,133) ‘ dxy € X . (1’1,.'112) € O'i A (Ig,.’l?g) € O'i}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« € L x L such that! <!’ iff [ € A(p) and the statement at p is of the
form wait (1’) or monitor_enter(1’). Define the strict lock order <= <.
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Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock) J

If there exists no a € L with a < a then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) at Lg and on monitors
at L, such that L =;L£U Las.

Theorem (freedom of deadlock for monitors)
Ifa € Ls.a ZaandVacLy,beL.a<bAb<a= aghhthen the program
is free of deadlocks. -
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Avoiding Deadlocks in Practice

How can we modify a program so that locks can be ordered?
@ identify mutex locks Qiflnd summarized monitor locks (Lih,) C Ly
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Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) at Lg and on monitors
at Ly; suchthat L = Lg U Lyy.

IfVa € Lg.a £aandVa € Ly, be L.a<bAb<a= a#bthen the program

Theorem (freedom of deadlock for monitors)
is free of deadlocks. J

Note: the set L contains ins{gnces of a lock.

@ the set of lock instances can vary at runtime

e if we staticmsure that deadlocks cannot occur:
summarize every monitor that may have several instances into one
asummary lock @ € Ly represents several concrete ones

>

» thus, if g < a then this might not be a self-cycle

» -~ require that a 4 a for all summarized monitors a € Ly
x =

v
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Avoiding Deadlocks in Practice

How can we modify a program so that locks can be ordered?
@ identify mutex locks Lg and summarized monitor locks L5, € Ly,
@ identify non-summary monitor locks L}, = Ly; \ L,
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Avoiding Deadlocks in Practice M Avoiding Deadlocks in Practice i

How can we modify a program so that locks can be ordered? How can we modify a program so that locks can be ordered?
@ identify mutex locks Ls and summarized monitor locks L3, C Ly, @ identify mutex locks Lg and summarized monitor locks L5, C Ly
@ identify non-summary monitor locks L}, = Las \ L}, @ identify non-summary monitor locks L%, = Ly \ L,
° sortlc_;_cl(iinto ascending order according to lock sets < = 44 @ sort locks into ascending order according to lock sets

AN Ordering might be hard or impossible to find:

@ determining which locks may be acquired at each program point is
undecidable ~~ approximate lock set

@ an array of locks: lock in increasing array index sequence
@ if I € \(P) exists where L_< I should be locked: release [, acquiref, then
acquire | again ~ inefficient
@ if a lock set contains a summarized lock @ and @ is to be acquired, we're
h_———

stuck
i R
Avoiding Deadlocks in Practice TN Refining the Queue: Concurrent Access T
Add a second lock s->t to allow concurrent removal:
How can we modify a program so that locks can be ordered? double-ended queue: removal
@ identify mutex locks Lg and summarized monitor locks L3, C Ly, int PopRight (DQueue* q) {
@ identify non-summary monitor locks L%, = Ly \ L§; UNode* oldRightNode;

wait(q->t); // wait to enter the critical section

@ sort locks into ascending order according to lock sets
9 9 (Node* rightSentinel = g->right;

A Ordering might be hard or impossible to find: oldRightNode = rightSentinel->left;
@ determining which locks may be acquired at each program point is if (oldRightNode==leftSentinel) { signal(q->t); return -1; }
undecidable ~~ approximate lock set (Node* newRightNode = oldRightNode->left;

int ¢ = newRightNode==leftSentinel;

if (¢) wait(g->s);
newRightNode->right = rightSentinel;

@ an array of locks: lock in increasing array index sequence

@ if [ € A(P) exists where I’ < [ should be locked: release I, acquire I’, then
acquire | again ~- inefficient

rightSentinel->left = newRightNode;
@ if a lock set contains a summarized lock a and a is to be acquired, we're if (c) signal(q->s);
stuck siggzi(q—>t); 77 signal that we’re done
an example for the latter is the Foo class: two instances of the same class call int val = oldRightNode->val;
each other free(oldRightNode) ;
return val;
¥
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Example: Deadlock freedom

Is the example deadlock free? Consider its skeleton:
double-ended queue: removal
void PopRight() {
&éit(q—>t);
if‘(*) { signal(q->t);@return; }

‘U]ﬁ ' (c) wait(q->s); Ut 4ds
{s.4} -
(c) signal(g->s);

}pggnal(q—n) ;
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Atomic Execution and Locks
Consider replacing the specific locks with atomic annotations:

double-ended queue: removal
void PopRight() {

wait(gq->t);
if (%) { signal(q->t); return; }
if (¢) wait(g->s);

if (c) signal(qg->s);
signal(q->t);

36/41

Atomic Executions, Locks and Monitors Locked Atomic Executions

37in

Example: Deadlock freedom

Is the example deadlock free? Consider its skeleton:

double-ended queue: removal
void PopRight() {

%Qit(q—>t);

if‘(*) { signal(q->t); return; }
ié'(c) wait(g->s);

ifi(c) gignal(q->s);

signal(q->t);
}

@ in Pushleft, the lock set for s is empty
@ here, the lock set of s is {t} J
® ¢ <1 and transitive closureis t < s

— —— —k
@ -~ the program cannot deadlock
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