Script generated by TTT

Title: Simon: Programmiersprachen (25.11.2013)

Mon Nov 25 14:17:23 CET 2013 Date:

Duration: 31:25 min

Pages: 14

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call $\lambda(p) \subseteq L$ the lock set at p, that is, the set of locks that may be in the "acquired" state at program point p.

We require the transitive closure σ^+ of a relation σ :

Definition (transitive closure)

Let $\sigma \subseteq X \times X$ be a relation. Its transitive closure is $\sigma^+ = \bigcup_{i \in \mathbb{N}} \sigma^i$ where

$$\begin{array}{rcl} \sigma^0 & = & \sigma \\ \sigma^{i+1} & = & \{\langle x_1, x_3 \rangle \mid \exists x_2 \in X \, . \, \langle x_1, x_2 \rangle \in \sigma^i \wedge \langle x_2, x_3 \rangle \in \sigma^i \} \end{array}$$

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define $\triangleleft \subseteq L \times L$ such that $l \bowtie l$ iff $l \in \lambda(p)$ and the statement at p is of the

Deadlock Prevention through Partial Order

Definition (lock sets)

Let L denote the set of locks. We call $\lambda(p) \subseteq L$ the lock set at p, that is, the set of locks that may be in the "acquired" state at program point p.

We require the transitive closure σ^+ of a relation σ :

Definition (transitive closure)

Let $\sigma \subseteq X \times X$ be a relation. Its transitive closure is $\sigma^+ = \bigcup_{i \in \mathbb{N}} \sigma^i$ where

$$\sigma^{0} = \sigma
\sigma^{i+1} = \{\langle x_{1}, x_{3} \rangle \mid \exists x_{2} \in X . \langle x_{1}, x_{2} \rangle \in \sigma^{i} \land \langle x_{2}, x_{3} \rangle \in \sigma^{i} \}$$

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define $\triangleleft \subseteq L \times L$ such that $l \triangleleft l'$ iff $l \in \lambda(p)$ and the statement at p is of the form wait (1') or monitor_enter (1'). Define the strict lock order $\prec = \lhd^+$.

Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)

If there exists no $a \in L$ with $a \prec a$ then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) at L_S and on monitors at L_M such that $L = \underline{L_S} \cup \underline{L_M}$.

Theorem (freedom of deadlock for monitors)

If $\forall a \in L_S . a \not\prec a$ and $\forall a \in L_M, b \in L . a \prec b \land b \prec a \Rightarrow a \not\preceq b$ then the program is free of deadlocks.

Atomic Executions, Locks and Monitors

Locked Atomic Executions

33 / 4

חחלחו

Avoiding Deadlocks in Practice

How can we modify a program so that locks can be ordered?

• identify mutex locks L_S and summarized monitor locks $L_M^{m{k}}$

Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)

If there exists no $a \in L$ with $a \prec a$ then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) at L_S and on monitors at L_M such that $L = L_S \cup L_M$.

Theorem (freedom of deadlock for monitors)

If $\forall a \in L_S . a \not\prec a$ and $\forall a \in L_M, b \in L . a \prec b \land b \prec a \Rightarrow a \neq b$ then the program is free of deadlocks.

Note: the set \underline{L} contains <u>instances</u> of a lock.

- the set of lock instances can vary at runtime
- if we statically want to ensure that deadlocks cannot occur:
 - summarize every monitor that may have several instances into one
 - ightharpoonup a summary lock $\bar{\underline{a}} \in L_M$ represents several concrete ones
 - ▶ thus, if $\bar{a} \prec \bar{a}$ then this might not be a self-cycle
 - ightharpoonup require that $ar{a}
 ot \prec ar{a}$ for all summarized monitors $ar{a} \in L_M$

Atomic Executions, Locks and Monitors

ocked Atomic Executions

33 / 41

Avoiding Deadlocks in Practice

How can we modify a program so that locks can be ordered?

- ullet identify mutex locks L_S and summarized monitor locks $L_M^s\subseteq L_M$
- ullet identify non-summary monitor locks $L_M^n=L_M\setminus L_M^s$

Avoiding Deadlocks in Practice

Avoiding Deadlocks in Practice

How can we modify a program so that locks can be ordered?

- ullet identify mutex locks L_S and summarized monitor locks $L_M^s\subseteq L_M$
- identify non-summary monitor locks $L_M^n = L_M \setminus L_M^s$
- sort locks into ascending order according to lock sets
 ∠ ₹ ✓

How can we modify a program so that locks can be ordered?

- ullet identify mutex locks L_S and summarized monitor locks $L_M^s\subseteq L_M$
- identify non-summary monitor locks $L_M^n = L_M \setminus L_M^s$
- sort locks into ascending order according to lock sets

⚠ Ordering might be hard or impossible to find:

- determining which <u>locks</u> may be acquired at each program point is undecidable → approximate lock set
- an array of locks: lock in increasing array index sequence
- if $l \in \lambda(P)$ exists where $l' \prec l$ should be locked: release l, acquire l', then acquire l again \leadsto inefficient
- if a lock set contains a summarized lock \bar{a} and \bar{a} is to be acquired, we're stuck

Atomic Executions, Locks and Monitors

Locked Atomic Executions

34 / 41

Atomic Executions, Locks and Monitors

ocked Atomic Executions

24 / 4

Avoiding Deadlocks in Practice

How can we modify a program so that locks can be ordered?

- ullet identify mutex locks L_S and summarized monitor locks $L_M^s\subseteq L_M$
- ullet identify non-summary monitor locks $L_M^n=L_M\setminus L_M^s$
- sort locks into ascending order according to lock sets

⚠ Ordering might be hard or impossible to find:

- determining which locks may be acquired at each program point is undecidable → approximate lock set
- an array of locks: lock in increasing array index sequence
- if $l \in \lambda(P)$ exists where $l' \prec l$ should be locked: release l, acquire l', then acquire l again \leadsto inefficient
- \bullet if a lock set contains a summarized lock \bar{a} and \bar{a} is to be acquired, we're stuck

an example for the latter is the Foo class: two instances of the same class call each other

Refining the Queue: Concurrent Access

Add a second lock s->t to allow concurrent removal:

double-ended queue: removal

```
int PopRight(DQueue* q) {
  QNode* oldRightNode;
  wait(q->t); // wait to enter the critical section
  QNode* rightSentinel = q->right;
  oldRightNode = rightSentinel->left;
  if (oldRightNode==leftSentinel) { signal(q->t); return -1; }
  QNode* newRightNode = oldRightNode->left;
  int c = newRightNode==leftSentinel;
  if (c) wait(q->s);
  newRightNode->right = rightSentinel;
  rightSentinel->left = newRightNode;
  if (c) signal(q->s);
  signal(q->t); // signal that we're done
  int val = oldRightNode->val;
  free(oldRightNode);
  return val;
```

stomic Executions, Locks and Monitors Locked Ato

ocked Atomic Execution

34 / 41

Atomic Executions, Locks and Monitors

Locked Atomic Executions

35 / 41

Example: Deadlock freedom

Is the example deadlock free? Consider its skeleton:

Atomic Executions, Locks and Monitors

ocked Atomic Executions

36 / 41

Atomic Execution and Locks

Consider replacing the specific locks with atomic annotations:

```
double-ended queue: removal

void PopRight() {
    ...
    wait(q->t);
    ...
    if (*) { signal(q->t); return; }
    ...
    if (c) wait(q->s);
    ...
    if (c) signal(q->s);
    signal(q->t);
}
```

Example: Deadlock freedom

Is the example deadlock free? Consider its skeleton:

```
double-ended queue: removal

void PopRight() {
    ...
    wait(q->t);
    ...
    if (*) { signal(q->t); return; }
    ...
    if (c) wait(q->s);
    ...
    if (c) signal(q->s);
    signal(q->t);
}
```

- in PushLeft, the lock set for s is empty
- \bullet here, the lock set of s is $\{t\}$
- $t \triangleleft s$ and transitive closure is $\underline{t \prec s}$
- whe program cannot deadlock

Atomic Executions, Locks and Monitors

Locked Atomic Execution

36 / 4