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Deadlocks with Monitors )

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence leading to a deadlock:

class Foo {
public Foo other = null;
public synchronized void 325() {
. if (#) other.bar(); ...
}
¥
and two instances:
Foo g = new Foo();
Foo b = new Foo();
,a.other = b; b.other = a;
// in parallel:
a.bar() || b.bar();
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A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

@ threads A and B execute a.bar()
and b.bar ()

Consider this Java class:

class Foo {
public Foo other = null;
public synchronized void bar() {
. if (*) other.bar(); ...
} ~—
}
and two instances:
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Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:
class Foo { @ threads A and B execute a.bar()
public Foo other = null; and b.bar ()
public synchronized void bar() { e a.bar() acquires the monitor of a
_ i L other.barO; ... g 1or() acquires the monitor of b

} @ A happens to execute
other.bar ()

Consider this Java class:

and two instances:

Foo a = new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar();
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A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar()
public Foo other = null; and b.bar ()

public synchronized void bar() { ¢ a.bar () acquires the monitor of a
) -1t @ other.bar(); ... @ b.bar () acquires the monitor of b

} @ A happens to execute
other.bar ()

@ A blocks on the monitor of b

@ B happens to execute
other.bar ()

@ -~ both block indefinitely

Consider this Java class:

and two instances:

Foo a = new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar();
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Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar()
public Foo other = null; and b.bar ()

public synchronized void bar() { e a.bar() acquires the monitor of a
} - 82 other.bar(); ... @ b.bar () acquires the monitor of b

} @ A happens to execute
other.bar ()

@ A blocks on the monitor of b

Consider this Java class:

and two instances:

Foo a = new Foo();

Foo = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar(Q);
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Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
otherto finish, and thus neither ever does.

(Thergefmition generalizes to a set of actions with a cyclic dependency.)

ConsiderthisJava class: Sequence leading to a deadlock:
class—Fo5 1 @ threads A and B execute a.bar()

public Foo other = null; and b.bar ()
public synchronized void bar() { @ a.par() acquires the monitor of a
, . if (%) other.bar(); ... @ b.bar () acquires the monitor of b

} @ A happens to execute
other .bar ()

@ A blocks on the monitor of b

@ B happens to execute
other.bar ()

@ -~ both block indefinitely
How can this situation be avoided?

and two instances:

Foo a = new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar();
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:
@ ignored: for the lack of better approaches, can be reasonable if deadlocks

are rare
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
© circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani):
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
© circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt
@ prevention: design programs to be deadlock-free

© awoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
o rﬁeempﬁon: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt
@ prevention: design programs to be deadlock-free

@ awidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~+ prevention is the only safe approach on standard operating systems
@ can be achieve using lock-free algorithms
@ but what about algorithms that require locking?
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Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.
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Observation: A cycle cannot occur if locks can be partially ordered.

Let L denote the set of locks. We calll /\:Sp) C L the lock set at p, that is, the set

Definition (lock sets)
of locks that may be in the “acquired” state at program point p. J
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Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure_ g of a relation o:

Definition (transitive closure)
Lets € X x X be a relation. Its transitive closure is 0" = | J,_,, o' where

’-___.—é—-.
z =g
T . .
g = {{z1,x3) | Fwa € X . (w1, 72) € 0" A (w2,73) €0’}
L S
o A U A — w s
Osp< o o . mr = g =
Xi m
_— -
o=
32/41
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Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J
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Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o« of a relation o
Definition (transitive closure)
Leto C X x X be a relation. Its transitive closure is o " = |,y aiﬂvhem ,
o = o QQ‘EI?_ ¢! e
ot = {{xy,23) | Fro € X . (w1, m2) €' A (w9, 73) € '} = {
gar
Definition (lock order) J

Define g C L x L such that <1’ iff L € A(p) and the statement afp is of the
form wait (17) or monitor enter(1’). Define the strict lock order <= <*.

Each time a lock is acquired, we track the lock set at p:
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Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) at Ls and on monitors
atf_jg suchthat L = Lg U Lyy.

If Aa € Lg.a <aand Aa € Ly, b€ L.a##bAa—<bAb= athenthe program
is free of deadlocks. -

Theorem (freedom of deadlock for monitors) J
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Freedom of Deadlock TUT  Avoiding Deadlocks in Practice T

The following holds for a program with mutexes and monitors:
How can we modify a program so that locks can be ordered?

Theorem (freedom of deadlock) . . . .
. . . @ identify mutex locks Lg and summarized monitor locks L5, C Ly
If there exists no a € L with a < a then the program is free of deadlocks.
Suppose a program blocks on semaphores (mutexes) at Lgs and on monitors G’é —
at Ly suchthat L = Lg U Ly,.
Theorem (freedom of deadlock for monitors)
If Ao € Lg.a <aand Aa € Ly, be L.a#bAa<bAb =< athen the program
is free of deadlocks. ity +ds +<s
Note: the set L contains instances of a lock. 1
@ the set of lock instances can vary at runtime
@ if we statically want to ensure that deadlocks cannot occur: &) -
» summarize every monitor that may have several instances into one %
» asummary lock @ € L, represents several concrete ones
» thus, if @ < @ then this might not be a self-cycle
» -~ require that a £ a for all summarized monitors a € Ly
4 EaL
Example: Deadlock freedom T Example: Deadlock freedom T
Is the example deadlock free? Consider its skeleton: Is the example deadlock free? Consider its skeleton:
double-ended queue: removal double-ended queue: removal
void PopRight() { void PopRight() {
K’gs wait(q->t); wait(gq->t);
if (%) { signal(gq->t); return; } if (%) { signal(q->t); return; 7
315(’1?‘/1} (c) wait(q->s); if (c) wait(g->s);
{S' 5 if (c) signal(g->s); if (c) signal(g->s);
signal(q->t); signal(q->t);
} }

@ inkushleft, the lock set for s is empty
@ here, the lock set of s is {t} a < a
@ t <15 and transitive closure is ¢ < s

——
@ - the program lock
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Atomic Execution and Locks [ Atomic Execution and Locks LT

Consider replacing the specific locks with atomic annotations: Consider replacing the specific locks with atomic annotations:
double-ended queue: removal double-ended queue: removal
void PopRight() { void PopRight() {
wait(q->t); wait(g->t);
if (*) { signal(q->t); return; } if (*) { signal(q->t); return; }
if (c) wait(gq->s); if (c) wait(gq->s);
if (c) signal(g->s); if (c¢) signal(g->s);
signal(q->t); signal(gq->t);
} }

@ nested atomic blocks still describe one atomic execution
@ -~ |locks convey additional information over atomic
@ locks cannot easily be recovered from atomic declarations

/41 /41
Outlook N outlook i
Writing atomic annotations around sequences of statements is a convenient Writing atomic annotations around sequences of statements is a convenient
way of programming. way of programming.

Idea: Replace atomic sections with locks:
@ a single lock could be use to protect all atomic blocks
@ more concurrency is possible by using several locks
» compare the PushLeft, PopRight example

@ some statements might modify variables that are never read by other
threads ~~ no lock required

@ statements in one atomic block might access variables in a different order
to another atomic block ~~ deadlock prevention when creating locks

@ creating too many lock can decrease the performance, especially when
required to release locks in A(I) when acquiring !
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Outlook TN Concurrency across Languages T

Writing atomic annotations around sequences of statements is a convenient | t svst inal | ce h
way of programming. n most systems programming languages (C,C++) we have

@ the ability to use atomic operations
ldea: Replace atomic sections with locks:
@ a single lock could be use to protect all atomic blocks
@ more concurrency is possible by using several locks
» compare the PushLeft, PopRight example

@ some statements might modify variables that are never read by other

threads ~+ no lock required
@ statements in one atomic block might access variables in a different order

to another atomic block ~~ deadlock prevention when creating locks

@ creating too many lock can decrease the performance, especially when
required to release locks in A(l) when acquiring {

~ creating locks automatically is non-trivial and, thus, not standard in
programming languages

2L L
Concurrency across Languages TUM  concurrency across Languages i
In most systems programming languages (C,C++) we have In most systems programming languages (C,C++) we have
@ the ability to use atomic operations @ the ability to use atomic operations
@ -~ we can implement wait-free algorithms @ -~ we can implement wait-free algorithms
In Java, G# and other higher-level languages In Java, G# and other higher-level languages
@ provide monitors and possibly other concepts @ provide monitors and possibly other concepts

@ often simplify the programming but incur the same problems

| language || barriers | wait-/lock-free | semaphore | mutex | monitor |

C.C++ v v v v (a)
JavaC# | - - ) | L v

(a) some pthread implementations allow a reentrant attribute

(b) simulate semaphores using an object with two synchronized
methods
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Summary

Classification of concurrency algorithms:
@ wait-free, lock-free, locked
@ nexton thefag—enda: transactional
Wait-free algorithms:
@ never block, always succeed, never deadlock, no starvation
@ very limited in what they can do
Lock-free algorithms:
@ never block, may fail, never deadlock, may starve
@ invariant may only span a few bytes (8 on Intel)
Locking algorithms: o
@ can guard arbitrary code
@ can use several locks to enable more fine grained concurrency
® may deadlock
@ semaphores are not re-entrant, monitors are
~= Use algorithm that is best fit

Atomic Executions, Locks and Monitors Locked Atomic Executions
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Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set, of
operations, including PushLeft
The Insert operations uses the FgrAll operation to check if the element
alreaay exists and uses PushLeft if not.

Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
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compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
@ -~ wrap the two calls in Insert in a mutex
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compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
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Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in @ mutex does not help to make the set thread-safe.
@ -~ wrap the two calls in Insert in a mutex

outotherlist-operations-ean-stilkbecatted ~~ use the same mutex




Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
@ -~ wrap the two calls in Insert in a mutex
@ but other list operations can still be called ~~ use the same mutex
~ unlike sequential algorithms, thread-safe algorithms cannot always be
composed to give new thread-safe algorithms
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Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
@ -~ wrap the two calls in Insert in a mutex
@ but other list operations can still be called ~~ use the same mutex
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Concurrency: Transactions

Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code
}
// code
}

Execute code as transaction:
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Concurrency: Transactions

Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.
if (cond)

C_/j
retry;
atomic {

// more code

}
// code
¥

Execute code as transaction:

atomic {
// code

Concurrency: Transactions Motivation
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Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.
atomic {
// code
if (cond) retry;
atomic {

// more code

}
// code ¢,
}

Execute code as transaction:
@ execute the code of an atomic block
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Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code
}
// code
¥

Execute code as transaction:
@ execute the code of an atomic block
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
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Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code

}
// code
}

Execute code as transaction:
@ execute the code of an atomic block

@ nested atomic block: i ingle atomic block
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Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code
}
// code
¥

Execute code as fransaction:
@ execute the code of an atomic block
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
@ if another thread interferes through conflicting updates:
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Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

. [y
atomic {

// code
if (cond) retry;
atomic {

// more code

}
// code
}

Execute code as transaction:
@ execute the code of an atomic block
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
@ if another thread interferes through conflicting updates:
» undo the computation done so far

Motivation

Concurrency: Transactions

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

I
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Design choices for transactional memory implementations:

Concurrency: Transactions Transaction Semantics
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Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code
}
// code
}

Execute code as transaction:
@ execute the code of an atomic block
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
@ if another thread interferes through conflicting updates:

» undo the computation done so far
» re-start the transaction

————
Concurrency: Transactions Motivation 2/3

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:
@ oplimistic vs. pessimistic concurrency control:

3/31

Concurrency: Transactions Transaction Semantics
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Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic. conflict occurrence, detection, resolution occur at once
D

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

3/

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

Concurrency: Transactions Transaction Semantics
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Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
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Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic. conflict occurrence, detection, resolution occur at once
* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem
» optimistic: detection and resolution can happen after a conflict occurs
* resolution here must be aborting one transaction
* need to repeated aborted transaction: livelock problem
@ eager vs. lazy version management. how read and written data are
managed during the transaction
» eager. writes modify the memory and an undo-log is necessary if the
transaction aborts
» lazy: writes are stored in a redo-log and modifications are done on

committing

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

© conflict detection:
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Design choices for TM that allow conflicts to happen:
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conflicts possible
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» eager: conflicts are detected when memory locations are first accessed

» validation: check occasionally that there is no conflict yet, always validate
when committing
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Choices for Optimistic Concurrency Control [l Semantics of Transactions i

The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

@ conflict detection:
» eager. conflicts are detected when memory locations are first accessed
= validation: check occasionally that there is no conflict yet, always validate

when committing

» lazy: conflicts are detected when committing a transaction

© reference of conflict (for non-eager conflict detection)
» fentative detect conflicts before transactions commit, e.g. aborting when
“fransaction TA reads while TB may writes the same location
» committed detect conflicts only against transactions that have committed

e
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Semantics of Transactions MM semantics of Transactions U
The goal is to use transactions to specify afomic executions. The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties: Transactions are rooted in databases where they have the ACID properties:

atomicity : a transaction completes or seems not to have run atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions -
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Semantics of Transactions

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicily : a transaction completes or seems not to have run

@ we call this failure atomicity to distinguish it from atomic
executions

consistency : each transaction transforms a consistent state to another
consistent state
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Semantics of Transactions
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)
isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory

durability : the effects are permanent v
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The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)
isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory
durability : the effects are permanent v
Transactions themselves must be serializable:
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Semantics of Transactions

The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicily : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions

consistency : each transaction transforms a consistent state to another
consistent state

@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memaory
durability : the effects are permanent v
Transactions themselves must be serializable:

@ the result of running current transactions must be identical to one
execution of them in sequence

@ serializability for transactions is insufficient to perform synchronization
between threads
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Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

I
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@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction
@ this is usually ok since it will be aborted eventually
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Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ a transaction that is run on an jnconsistent state may generate an
inconsistent state ~~ zombie transaction
d"-—-___-'
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Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
. . —_—
int tmpl = x: atomic {
int thQ =v; X_= ;
assert (tmpl-tmp2==0) ; y = 10;
} }
1




Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.
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@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert(tmpl-tmp2==0); y = 10;

¥ ¥
@ critical for C/C++ if, for instance, variables are pointers
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Weak- and Strong Isolation
If guarantees are only given about memory accessed inside atomic, a TM

implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?
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Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
e~ int tmpl = x; , atomic {
int tmp2 = y; x = 10;
assert(tmpl-tmp2==0); = 10;
P p y

¥ ¥
@ critical for G/C++ if, for instance, variables are pointers

Definition (ogacity)

A TM system provides opacity if failing transactions are serializable w.r.t.
committing transactions.

~- failing transactions still sees a consi iew of memory
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If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses

Weak- and Strong Isolation
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Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1
atomic { // Thread 2
) X = 42; int tmp = x;

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

@ -~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ sirong isolation: retain order between accesses to TM and non-TM
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Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?
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@ standard race problems as in unlocked shared accesses

// Thread 1

atomic { // Thread 2
X¥= 42; int tmp = x;

}

@ - give programs with races the same semantics as if using a single
global lock for all atomic blocks

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

@ -~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.
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If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Weak- and Strong Isolation

// Thread 1

atomic { // Thread 2
X = 42; int tmp = x;

}

@ -~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.

~ like sequential consistency, SLA is a statement about program equivalence
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Properties of Single-Lock Atomicity

atomic { k =i+j; }
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Observation:
@ SLA enforces order between TM and non-TM accesses v

8/31

Concurrency: Transactions Transaction Semantics

Properties of Single-Lock Atomicity

atomic { k =i+j; }

A
D
J
k
B
Observation:
8/31

Properties of Single-Lock Atomicity

aiomic { k = i+j; }
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Observation:

@ SLA enforces order between TM and non-TM accesses v~
» this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v

@ the content of non-TM memory conveys information which atomic block
has executed, even if the TM regions do not access the same memory
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Properties of Single-Lock Atomicity
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Observation:
@ SLA enforces order between TM and non-TM accesses v~
» this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v

@ the content of non-TM memory conveys information which atomic block
has executed, even if the TM regions do not access the same memory

» SLA makes it possible to use atomic block for synchronization

Disadvantages of the SLA model

The SLA model is simple but often too strang:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {}; int tmp = x; // x in TM
} }
@ SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1; int tmp = data;
atomic { // Thread 1 not in atomic
} if (ready) {
ready = 1; // use tmp

}

}
» under the SLA model, atomic {} acts as barrier
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Disadvantages of the SLA model

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {}; int tmp = x; // % in TM
} }
© SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1:c— int tmp = data;
Ttomic {’ // Thread 1 not in atomic
} ' if (ready) {
// use tmp
ready = 1;«—
y ¥
T
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Transactional Sequential Consistency

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
@ - the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent.
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@ TSC is weaker: gives strong isolation, but allows parallel execution v

m a-u'-.;c-u:jh

@ TSC is stronger: accesses within a transaction may not be re-ordered AN\
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Transactional Sequential Consistency ]

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
@ - the programmer cannot rely on synchronization

Definition (TSC)
The transactional sequential consfsterﬂ%del in which the acc‘g%ﬁ% .

within each transaction are sequentially Istent. Perm
atomic_{ k = i+j; _} /,/
j b4 |
B

@ TSC is weaker: gives strong isolation, but allows parallel execution v
@ TSC is stronger: accesses within a transaction may not be re-ordered VAN

~ actual implementations use TSC with some race free re-orderings
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