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Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 2 Program 3
Program 1 ", atomic {
atomic { "%-?g:’ci_ int tmp = 1;
i++; 2 _ i=j;
i = i+k; .
¥ } j = tmp;
1

The statements in an atomic block execute as atomic execution:

atomic{tmp=i; i=73;] =tmp}
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Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 2 Program 3
Program 1 atomic {
. atomic { . .
atomic { < i =i int tmp = i;
1++;_ i = i+k; ]: = J;
3 } j = tmp;
}
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Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 2 Program 3
Program 1 . atomic {
. atomic { . X
atomic { i = i; int tmp = i;
alzr=rH i= itk; 1 = 3j;
} } j = tmp;
}
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The statements in an atomic block execute as atomic execution:
= tmp_}

atomic { tmp = 1i; 1 = j; ]

tmp ) ry )

@ atomic only translatable when a corresponding atomic CPU instruction
exist

@ the notion of requesting atomic execution is a general concept
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Wait-Free Synchronization
e

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
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Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally

Program 4 Program 5 Program 6
atomic { atomic { atomic {
r = b; T = b; r = (k==i);
b = 0; b=1; 1f(r)1=J;
} } }

8/

Operations ugdate a memory cell and return the previous value.
@ the first two operations can be seen as settinga flagb to v € {0,1} ifb
not already contains v -
» this operation is called modify-and-test
@ the third case generalizes this to arbitrary values
» this operation is called compare-and-swap
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Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally
——
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Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally

Program 4 Program 5 Program 6
atomic { atomic { atomic {
r = b; r = b; r = (k==i);
b =0; b =1; if (xr) 1 = j;
} } }

Operations update a memory cell and refurn the previous value.
@ the first two operations can be seen as settinga flagb to v € {0, 1} ifb
not already contains v
» this operation is called modify-and-test
@ the third case generalizes this to arbitrary values
» this operation is called compare-and-swap

~+ use as building blocks for algorithms that can_fail
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If a wait-free implementation is not possible, a lock-free implementation might
still be viable.

Lock-Free Algorithms
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If a wait-free implementation is not possible, a /ock-free implementation might
still be viable.
Common usage pattern for compare and swap:

A
@ read the initial value in i into & (using memory barriers) [j
© calculate a new value j = f(k) .f’: 7
14
N4
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Lock-Free Algorithms

© update i to j if i = k still holds
@ go to first step if i # k meanwhile
/N note: i = k must imply that no thread has updated i
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If a wait-free implementation is not possible, a lock-free implementation might
still be viable.

Common usage pattern for compare and swap:

@ read the initial value in i into k (using memory barriers)
@ calculate a new value j — f(k)

© update i to j if i = k stil holds

© go tofirst step if i # k meanwhile

Lock-Free Algorithms
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If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in 7 into k& (using memory barriers)
© calculate a new value j = f(k)

© update i to j if i = k still holds

© go tofirst step if i # k meanwhile
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Lock-Free Algorithms

/N note: i = k must imply that no thread has updated i
~+ general recipe for lock-free algorithms

@ given a compare-and-swap operation for n bytes

@ try to group variables for which an invariant must hold into n bytes
@ read these bytes atomically

@ calculate a new value

@ perform a compare-and-swap operation on these n bytes

Wait-Free Synchronization 10/ 41
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Lock-Free Algorithms

I

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
© calculate a new value j = f(k)
© update i to j if i = k still holds
@ go to first step if i # k meanwhile
/N note: i = k must imply that no thread has updated i
~+ general recipe for lock-free algarithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into » bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on these n bytes
~= calculating new value must be repeatable
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operationA 5
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Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register

—_
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory
» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~- only very simple algorithms can be implemented, for instance
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory
» modify-and-test on bits in memory
@ provided instructions usually allow only one memory operand
~= only very simple algorithms can be implemented, for instance
binary semaphores : a flag that can be acquired (set) if free (unset) and
released
counting semaphores : an integer that can be decreased if non-zero and
increased
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~+ only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore
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Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory
» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~- only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

I mutex : ensures mutual exclusion using a binary semaphare

monitor : ensures mutual exclusion using a binary semaphaore, allows
other threads to block until the next release of the resource

We will collectively refer to these data structures as locks.
Pl

Limitations of Wait- and Lock-Free Algorithms T[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~+ only very simple algorithms can be implemented, for instance

binary semaphaores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore

monitor : ensures mutual exclusion using a binary semaphore, allows
other threads to block until the next release of the resource

vy vy

i
Locks T

A lock is a data structure that

@ protects a critical section: a piece of code that may produce incorrect
results when executed concurrently from several threads

@ it ensures mutual exclusion: no two threads execute at once

@ block other threads as soon as one thread executes the critical section
® can be acquired and released

@ may deadlock the program

Atomic Executions, Locks and Monitors Locked Atomic Executions 12/41




Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() { 457U“01
bool avail;
do {
void signal() { %ﬂ/’b&u«_ atomic {
gggggc {s=s8+1; %} avail = s>0;
} if (avail) s-—;
}
} while (lavail);

}
A counting semaphore can track how many resources are still available.

Atomic Executions, Locks and Monitors Locked Atomic Executions

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;
do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
T if (avail) s--;
}
} while (lavail);
}
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns

Locked Atomic Executions
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Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} if (avail) s--;
}
} while ('avail);

T
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
—
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Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
¥ if (avail) s--;
}
} while (lavail);

}
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal ()
@ (choosing which available resource to use requires more synchr.)
Special case: initializing with_s = 1 gives a binary semaphore:
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Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void signal() {
atomic { s = s + 1; }

}

void wait() { &
bool avail;
do {
atomic {
avail = s>0;
if (avail) 55
}
} while (lavail);

}

A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal ()
@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:
@ can be used to block and unblock a thread

Atomic Executions, Locks and Monitors Locked Atomic Executions

Implementation of Semaphores

A semaphore does not have to busy wait:

void signal() {
atomic { s = s + 1; %}

}

void wait() {
bool avail;
do {
atomic {
avail = s>0;
if (avail) s-—-;
T
if (lavail) de_schedule(&s);
} while ('avail);
}

Busy waiting is avoided by placing waiting threads into queue:
@ athread failing to decrease s executes de_schedule()

—————
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Implementation of Semaphores T

A semaphore does not have to busy wait:

void wait() {
bool avail;
do {
atomic {
avail = s>0;
if (avail) s--;
}
if (lavail) de_schedule(&s);
} while (lavail);

}

Busy waiting is avoided by placing waiting threads into queue:

void signal() {
atomic { s = s + 1; }

}

e
Implementation of Semaphores T

A semaphore does not have to busy wait:

void wait() {
bool avail;
do {
atomic {
avail = s>0;
if (avail) s--;
¥
if (lavail) de_schedule(&s);
} while (lavail);
}

Busy waiting is avoided by placing waiting threads into queue:
@ a thread failing to decrease s executes de_schedule()

@ de_schedule() enters the operating system and adds the waiting thread
into a queue of threads waiting for a write to memory address &s

@ once athread calls signal(), the first thread ¢ waiting on &s is extracted
e

void signal() {
atomic { s = s + 1; }

}
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Implementation of Semaphores

A semaphore does not have to busy wait:

void wait() {
bool avail;
do {
atomic {

%
avail = s>0;

if (avail) s--;

void signal() {
atomic { s =

}

s+ 1; }

}
if (lavail) de_schedule(&s);
} while ('avail);
}

Busy waiting is avoided by placing waiting threads into queue:
@ a thread failing to decrease s executes de_schedule()
@ de_schedule() enters the operating system and adds the waiting thread
into a queue of threads waiting for a write to memory address &s
@ once athread calls signal(), the first thread ¢ waiting on &s is extracted
@ the operating system Iet:s_t return from its call to de_schedule ()

Atomic Executions, Locks and Monitors Locked Atomic Executions
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Practical Implementation of Semaphores
Certain optimisations are possible:

void wait() {
bool avail;
do { atomic {
avail = s>0;
if (avail) s—-;

void signal() {
atomic { s = s + 1; }
} }
if ('avail) de_schedule(&s);
} while ('avail);
}
In general, the implementation is more complicated

@ wait () may busy wait for a few iterations
» saves de-scheduling if the lock is released frequently

Locked Atomic Executions 15/41
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Practical Implementation of Semaphores
Certain optimisations are possible:

void wait() {
bool avail;
do { atomic {
avail = s>0;
if (avail) s--;

void signal() {
atomic { s = s + 1; }

} }
if (lavail) de_schedule(&s);
} while (lavail);
}
In general, the implementation is more complicated
@ wait() may busy wait for a few iterations
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void wait() {
bool avail;

Practical Implementation of Semaphores
do { atomic {

Certain optimisations are possible:
avail = s>0; /;?

if (avail) s--;

void signal() {
atomic { s = s + 1; }
} }
if (l'avail) de_schedule(&s);
} while (lavail);
}
In general, the implementation is more complicated
@ wait () may busy wait for a few iterations
» saves de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time
@ signal () might have to inform the OS that s has been written
~= using a semaphore with a single thread reduces to if (s) s--;
@ using semaphores in sequential code has no or little penalty
@ program with concurrency in mind?

Atomic Executions, Locks and Monitors Locked Atomic Executions
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Making a Queue Thread-Safe

Consider a double ended quegue:

o /4
g

dguble—ended queue \

N

right
sentinel

left = = S
sentinef \ TR @<~ & 90 .

Fii3

double-ended queue: adding an element
void PushLeft(DQueue* g, int val) {

7 (QNode *qn = malloc(sizeof (QNode));
1  gn->val = val;
3 // prepend node gn
U's QNode* leftSentinel = g->left;
< (Node* oldLeftNode = leftSentinel->right;
¢ gn->left = leftSentinel;
72  gn->right = oldLeftNode;
L4 leftSentinel->right = qgn;
4 oldLeftNode —> left = gn;
}
o/
Mutexes i

One common use of semaphores is to guarantee mutual exclusion.
@ in this case, a binary semaphore is also called a mutex

@ add a lock to the double-ended queue data structurg F—:Sj’_]

Atomic Executions, Locks and Monitors Locked Atomic Executions
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Mutexes
One common use of semaphores is to guarantee mutual exclusion.
e ——
@ in this case, a binary semaphore is also called a mutex
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Implementing the Removal

By using the same lock q->s, we can write a thread-safe PopRight:
int PopRight (DQueue* q) {

sl
(Node* oldRightNode;

(Node* leftSentinel”= g->left;
(QNode* rightSentinel = gq->right;
wait(q->s); // wait to enter the cri
oldRightNode’= rightSentinel->lefft;
if (oldRightNode==leftSentinel)’{ signal(g->s); return -1; }
(Node* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;

rightSentinel->left = newRightNode;

signal(g->s); // signal that we’re done

int val = oldRightNode->val;

free(oldRightNode) ;

return val;

double-ended queue: removal

Locked Atomic Executions 18/41
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Implementing the Removal

By using the same lock g->s, we can write a thread-safe PopRight:
double-ended queue: removal

int PopRight (DQueue* q) {
(QNode* oldRightNode;
QNode* leftSentinel = g->left;
(Node* rightSentinel = g->right;
wait(gq->s); // wait to enter the critical section
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) { si
(QNode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;
signal(q->s); // signal that we’re done
int val = oldRightNode->val;
free(oldRightNode) ;
return val;

}

al(q->s); return -1; }

I

@ error case complicates code ~ semaphores are easy to get wrong
@ abstract common concept._take lock on entry, release on exit

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
© is a re-occurring pattern, should be generalized
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Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
aa

@ releasing the lock upon exit from this function

Locking each procedure body that accesses a data structure:

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
© becomes problematic in recursive calls: it blocks
Qifa thread ¢ waits for a data structure to be filled:
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Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
© is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks
@ if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g.w and obtain -1

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
© is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1
» tthen has to call again, until an element is available

- A ¢ is busy waiting and produces contention on the lock
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Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
© becomes problematic in recursive calls: it blocks

© if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ s a re-occurring pattern, should be generalized
© becomes problematic in recursive calls: it blocks
@ if a thread ¢ waits for a data structure to be filled:

R — ]
» t will call e.g. PopRight and obtain -1
» tthen has to call again, until an element is available

- A t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:
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Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
© is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks
@ if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

» ANy is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
© is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1
» tthen has to call again, until an element is available

- A ¢ is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

@ if that lock is already taken, proceed if it is taken by the current thread
~= need a way to release the lock after the return of the last recursive call

Atomic Executions, Locks and Monitors
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Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
© becomes problematic in recursive calls: it blocks
© if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

ALY is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

© if that lock is already taken, proceed if it is taken by the current thread
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Implementation of a Basic Monitor

A monitor contains a mutex s and the thread currently occupying it:
typedef struct monitor mon_t;
struct monitor { int tid; int count; };
. . . . —— .
void monitor_init(mon_t* m) { memset(m, O, sizeof(mon_t)); }

Define monitor enter and monitor leave:
— . =

@ ensure mutual exclusion of accesses to mon_t

@ track how many times we called a monitored procedure recursively
void monitor_enter(mon_t *m) { void monitor_leave(mon_t *m) {

atomic {
m->count--;

>count—

bool mine = false;
mtmi—
while (!'mine)

atomic { if (m->count==0) {
mine = threa =m->tid; // wake up threads

if (mine) m->count++; else
if (m->tid==0) {

m->tid=0;

}

mine = true; m->count=1; }
m->tid = thread_id(); }

};
if (!mine) de_schedule (&m->tid);
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Rewriting the Queue using Monitors MU Implementation of a Basic Monitor i

Instead of the mutex, we can now use monitors to protect the queue: A monitor contains a mutex s and the thread currently occupying it:

. . t def st t it t;
double-ended queue: monitor version ypeded struct monitor Mon-t;

struct monitor { int tid; int count; I};
void PushLeft(DQueue* q, int val) { void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); }
i e (G Define monitor_enter and monitor_leave:
msoses AeesalEeed); @ ensure mutual exlclu5|on of accesses tc? mon_t .
} @ track how many times we called a monitored procedure recursively
void ForAll(DQueue* g, void data, void (*callback)(void*,int)){ void monitor_enter (mon_t *m) { void monitor_leave(mon_t *m) {
monitor_enter (gq->m); bool mine = false; atomic {
for (QNode* gn = g->left->right; gn!=q->right; gn=gn->right) while ('mine) { a-rcount—;
(*callback) (data, gn->val); atomic { if (m=>count==0) {
monitor_leave (q->m) ; mine = thread_id()==m->tid; // wake up threads
¥ if (mine) m->count++; else m->tid=0; .
‘ if (m->tid==0) { }
Recursive calls possible: mine = true; m->count=1; ¥
m->tid = thread_id(); }
1
b
if ('mine) de_schedule(&m->tid) ;}}
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Rewriting the Queue using Monitors TUml  Rewriting the Queue using Monitors T
Instead of the mutex, we can now use monitors to protect the queue: Instead of the mutex, we can now use monitors to protect the queue:
. . T . .
double-ended queue: monitor version double-ended queue: monitor version
void PushLeft(DQueue*@ﬂ int val) { - C}q void PushLeft (DQueue* q, int val) {
monitor_enter (g->m) ; .fij monitor_enter(q->m) ;
monitor_leave(g->m); ?“ monitor_leave(g->m) ;
T T
void ForAll(DQueue* g, void* data, void (*callback)(void*,int)){ void ForAll(DQueue#* g, void# data, void (*callback) (void#,int)){
monitor_enter (g->m) ; monitor_enter (g->m) ;
for (QNoﬁe* gn = g->left->right; gn!=q—>right; gqn=qn->right) for (QNode* gqn = g->left->right; qn!=gq->right; qn=gn->right)
(*callback) (data, gn->val); (*callback) (data, gn->val);
monitor_leave(gq->m) ; monitor_leave (q->m) ;
r———
} > } o
Recursive calls possible: Recursive calls possible:

@ the function passed to ForAll can invoke Pushleft
——
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Rewriting the Queue using Monitors

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version
void PushLeft(DQueue* g, int val) {

monitor_enter (g->m) ; D@:\
a y ?—7@:_5\] ()
}

void ForAll(DQueue* q, void* daga, void (*callback)(fé;;*,int)){
monitor_enter (g->m) ;
for (QNode* gn = g->left->right; gn!=q->right; gn=qn->right)
(*callback) (data, gn->val);
———
monitor_leave(g->m);

}

monitor_leave(gq->m) ;

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(%,%, &PushLeft) duplicates entries
21/41

Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
e if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g. PopRight and obtain ;3_
» tthen has to call again, until an element is available
> & t is busy waiting and produces contention on the lock
S DUSY Wa
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Rewriting the Queue using Monitors

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueuex q, int val) {
monitor_enter (g->m) ;

monitor_leave (q->m) ;
}
void ForAll(DQueue* q, void* data, void (*callback)(void*,int)){
monitor_enter (g->m) ;
for (ONode* gn = g->left->right; gn!=q->right; gn=qn->right)
(*callback) (data, gn->val);
monitor_leave(g->m) ;

}

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
® example: ForA11(q,{)#PushLeft) duplicates entries
@ using monitor instead of mutex ensures that recursive call does not block

Atomic Executions, Locks and Monilors Locked Atomic Executions
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Condition Variables

v Monitors simplify the construction of thread-safe resources.

Still: Efficiency problem when using resource to synchronize:
@ if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> A t is busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; int cond; };

22/41
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Condition Variables

v Monitors simplify the construction of thread-safe resources.

Still: Efficiency problem when using resource to synchronize:
e if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1
» ¢ then has to call again, until an el&ment is available

> & t is busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; int cond; };

Define these two functions:
@ wait for the condition to become true

e
» called while being inside the monitor

» temporarily rgleaggs The monitor and blocks
» when signalled, re-acquires the monitor and returns

© _signal waiting threads thafthey may be able to proceed
» one/all waiting threads that called_wait will be woken up, two possibilities:

signal-and-urgent-wait : the signalling thread suspends and continues once
the signalled thread has released the monitor

signal-and-continue the signalling thread continues, any signalled thread
enters when the monitor becomes available

Atomic Executions, Locks and Monitors Locked Atomic Executions

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ a call to wait on condition a
adds thread to the queue a.gq

I
ag wait a

—
&

T

b.q
=======_signalled

ﬂ ¢

ﬂgna[ed

wait b

 enes)

source: http://en.wikipedia.org/wiki/Monitor_ (synchronization)
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:
@ a thread who tries to enter a
monitor is added to queue e if

(]
3
' the monitor is occupied
1 -
e s
a.q wait a 7 . ;i
signal
anaﬂed W1___
b.q Wwaitb am/* K ,,,Z
[ signalled | ~
Y]
<
I v @

source: http://en.wikipedia. org/wiki/Monitor_(synchronization}
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Signal-And-Urgent-Wait Semantics

Requires one gqueues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue ¢ if
the monitor is occupied

@ a call to wait on condition a
adds thread to the queue a.g

@ acallto signal for a adds
thread to queue s (suspended)

23/41
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source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue ¢ if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

@ acall to signal for a adds

laue

thread to queue s (suspended)
@ one thread form the a queue is
woken up
@
]
3 <
ﬂ ' @
source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
B4t
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ a call to wait on condition a
adds thread to the queue a.q

@ acallto signal for a adds

JEE)

T— thread to queue s (suspended)

aq waita @ one thread form the a queue is
[#

J signalled woken up

U @ signal Onais ano-op if a.q is
b.q yvait b empty

=] signalled |_ @ if athread leaves, it wakes up
, | one thread waiting on s
W@

source: http://en.wikipedia.org fu1k1/}‘lom{y(synchron1z ation)
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:
@ a thread who tries to enter a

% monitor is added to queue e if
- the monitor is occupied
@ a call to wait on condition a
- adds thread to the queue a.q
o @ acall to signal for ¢ adds
T thread to queue s (suspended)
aq - wait a .
- @ one thread form the a queue is
! signalled woken up
] @ signalonais ano-opifa.qis
b.q waith empty
— signalled
. <
ﬂ +|@
source: http: //en.wikipedia. urgfuikl/}{nM_(synchrunlzatiun)
EE

Ul

Signal-And-Urgent-Wait Semantics

Requires one gqueues for each condition ¢ and a suspended queue s:

@ a thread who tries to enter a
monitor is added to queue ¢ if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.g

@ acallto signal for a adds
thread to queue s (suspended)

a.q 1 wait a o thread th .
one thread form the a queue is
1 signalled - woken up
| @ signalonais ano-opifa.gis
b.q waith empty
=== signalled }|_ @ if athread leaves, it wakes up
. TR one thread waiting on s
| !’ @ if s is empty, it wakes up one

thread from e

source: http://en.wikipedia.org/wiki/ or_(synchronization)
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Signal-And-Urgent-Wait Semantics [

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue ¢ if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

@ acall to signal for a adds
thread to queue s (suspended)

@ one thread form the a queue is
woken up

@ signal onais ano-opifa.gis
empty

@ if a thread leaves, it wakes up
one thread waiting on s

@ if s is empty, it wakes up one
thread from e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

~+ queue s has priority overe
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i

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

@
3
g @ acallto wait on condition a adds
— rntl thread to the queue a.q
(7 () notified N[/ i
IS @ acall to notify for « adds one
:ﬂ notified thread from a.q to e (unless a.q is
T e empty)
b.q ‘.'_-] ﬂ—rl
a.q
~ waita
I noti
wait b fy
. )
3
jab]
<
(V]

source: http://en. wikipedia. org/wiki/Moniter_(synchronization)
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.

@ a call to wait on condition @ adds
thread to the queue a.¢q

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.
g
g @ acall to wait on condition a adds

thread to the queue a.q

@ a call to notify for a adds one

() notified |/

QO D notified thread from a.q to e (unless a.q is
D N empty)
baj O b e if a thread leaves, it wakes up one
a.q thread waiting on e
wait a

source: http://en.wikipedia.org/wikiddnitor_(synchronization)
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.

[0}
E* @ a call to wait on condition a adds
S T thread to the queue a.q
(% notified 4
R N @ acall to notify for a adds one
T A D notifigd thread from a.q to e (unless a.q is
N o empty)
baf ) ;. e if a thread leaves, it wakes up one
a.q ' thread waiting on e
wait a ~ gignalled threads compete for the
f monitor
. notify
)Nanb .
L AV
o
i)
<
@

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.
[}

E‘ @ acallto wait on condition a adds
g m— thread to the queue a.q
y () O\ notified '/
S @ acall to notify for « adds one
= PS D notified thread from a.q to e (unless a.q is
~ N T empty)
baf O L @ if a thread leaves, it wakes up one
a.q " thread waiting on e
- waita ~ signalled threads compete for the
* monitor
b notify @ assuming FIFO ordering on e,
Buka ( - threads who tried to enter
] _ between wait and notify will run
g first
® @ need additional queue s if waiting

threads should have priority

source: http://en. wikipedia. org/wiki/Moniter_(synchronization)
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.
@

@ a call to wait on condition a adds
thread to the queue a.¢q
@ acall to notify for « adds one
thread from a.q to e (unless a.q is
empty)
@ if a thread leaves, it wakes up one
thread waiting on ¢
~~ signalled threads compete for the
monitor
@ assuming FIFO ordering on e,
threads who tried to enter
between wait and notify will run
first

%g notified | /

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

Implementing Condition Variables

We implement the simpler signal-and-continue semantics:
@ a nolified thread is simply woken up and competes for the monitor

void cond wait(mon_t #*m) <
assert(m->tid==thread_id());
int old_count = m->count;
e
m->tid = 0;
de_schedule(&m->cond) ;
bool next_to_enter;

24/41
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do 1 . void cond_notify(mon_t *m) {
atomic { —
) // wake up other threads
next_to_enter = m->tid==0;
- . — m->cond = 1;
if (next_to_enter) { ) ———— 2
m->tid = thread_id();
= il
m->count = old_count;
} = ———
}

if ('next_to_enter) de_schedule (&m->tid);
} while ('mext_to_enter);
}

Atomic Executions, Locks and Monitors Locked Atomic Executions
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A Note on Notify

With signal-and-continue semantics, two notify functions exist:
ittt A

© notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

A Note on Notify
With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
© notifyall: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some
~+ programmer should assume that thread is not the only one woken up

What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid
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A Note on Notify
With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some

~+ programmer should assume that thread is not the only one woken up

A Note on Notify
With signal-and-continue semantics, two notify functions exist:

© notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some

~+ programmer should assume that thread is not the only one woken up
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A Note on Notify MU A Note on Notify HLT

With signal-and-continue semantics, two notify functions exist: With signal-and-contintie semantics, two notify function® exist:
@ notify: wakes up exactly one thread waiting on condition variable @ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable © notifyall: wakes up all threads waiting on a condition variable

A an implementation often becomes easier if notify means notify some
~ programmmer stretterassume that thread is-not-theemiyore wokesses
What about the priority of notified threads?

o gmotifiecHthread-sikely to block immediately on &m->tid

@ -~ notified threads compete for the monitor with other threads
@ if OS implements FIFO order: notified threads will run affer threads that

ap— S - . .
tried to enter since wait was called
@ giving priority to waiting threads requires better interface to OS
£/ B
Implementing PopRight with Monitors T Monitor versus Semaphores T
We use the monitor g->m and the condition variable g->c. PopRight: A monitor can be implemented using semaphores:

double-ended queue: removal @ protect each queue with a mutex

int PopRight (DQueue* q, int val) {

QNode* oldRightNode;

itor_enter(g->m); wait to enter the critical section

L: QNode* rightSentinel = gq->right;

oldRightNode = rightSentinel->left;

if (oldRightNode==leftSentinel) { cond_wait(g->c); gotc L; 1}

(Node* newRightNode = oldRightNode->left;

newRightNode->right = rightSentinel;

rightSentingel->left = newRightNode;

monitor_leave(q->m); // signal that we’re done

int val = oldRightNode->val;

free(oldRightNode) ;

return val;

}

e if the queue is empty, wait on_g->¢
@ use a loop, in case the thread is woken up spuriously
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Monitor versus Semaphores

A monitor can be implemented using semaphores:

@ protect each queue with a mutex

@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:

Atomic Executions, Locks and Monitors Locked Atomic Executions

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
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Monitor versus Semaphores

A monitor can be implemented using semaphores:

@ protect each queue with a mutex

@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:

@ protect the semaphore variable s with a monitor
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult implement general conditions
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity

» problematic if p is implemented by arbitrary code
» -~ wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ - difficult implement general conditions
OS would have to run code to determine if p holds
OS would have to ensure atomicity

problematic if p is implemented by arbitrary code
» -~ wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p
» notify variable if the predicate may have changed
@ or, simpler: notify all threads each time any predicate changes

yyyzy
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphare can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity

» problematic if p is implemented by arbitrary code
» ~ wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p
» notify yasigDle if the predicate may have changed

Monitors with a Single Condition Variable

Monitors with a single condition variable are built into Java and C#:
class C {

FEE)

// body of f
_ﬁl'\nonﬁed \J/ 3,
O is equivalent to
~ éJ class C {
public void £() {
monitor_enter();
// body of £
monitor_leave();

~ wait

] - 13
with Object containing:
—_—
private int mon_var;
private int mon_count;

. =
private int_cond var;

anea|

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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public synchronized void f() {

protected void monitor_enter();
protected void monitor_leave();
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Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting fortfhéq respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
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Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Consider this Java class: Sequence leading to a deadlock:

class Foo {
public Foo other = null;
public synchronized VOid,EEE() {
. if (%) other.bar(); ...
} — ——————
¥

and two instances:

Foo_a = new Foo();
Foo_b = new Foo();
a.other = b; b.other = a;
m-parallel: -

a.bar [l b.bar();
| Atomic Executions, Locks and Monitors | Locked Atomic Executions | 30/41
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Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
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Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

@ threads A and B execute a.bar()
and b.bar ()

Consider this Java class:

class Foo {
public Foo other = null;
public synchronized void bar() {
. if (*) other.bar(); ...
¥
}

and two instances:

Foo a = new Foo();

Foo b = new Foo();

a.other = b; b.other = a; anip—
// in parallel:

a.bar() || b.bar();
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Deadlocks with Monitors [

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence leading to a deadlock:
class Foo { @ threads A and B execute a.bar()
public Foo other = null; and b.bar ()

public synchronized void bar() { e a.bar() acquires the monitor of a
- if () other.barO); ... gy por() acquires the monitor of b

} @ A happens to execute
other.bar ()

@ A blocks on the monitor of b
Foo b = new Foo(); @ B happens to execute

a.other = b; b.other = a; other.bar ()
// in parallel: @ -~ both block indefinitely
a.bar() || b.bar();
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and two instances:

Foo a = new Foo();




