Dekker’s Algorithm and Weakly-Ordered T

Problem: Dekker’s algorithm requires sequentially consistency.

Script generated by TTT Idea: insert memory barriers between all variables common to both threads.
PO:
flag[0] = true;
sfence () ; @ insert a read memory
Title: Simon: Programmiersprachen (08.11.2013) while (lfence(), flag[l] == true) barierlfence() infront
if (lfence(), turn != 0) ({ of every write to common
_ _ . variables
Date: Fri Nov 08 14:25:20 CET 2013 flag[0] = false; | |
sfence () ; @ insert a write memory
. .) while (lfence (), turn != 0) { barrier sfence() after
Duration: 81:30 min // busy wait writing a variable that is
} read in the other thread
Pages: 49 flag[0] = true; @ the 1 fence () of the first
sfence(); iteration of each loop may
b | be combined with the
/ critical section preceding sfence () to an
turn =1 mfence ()
sfence() ;
flag[0] = false;
Gl e
Discussion i Discussion i
Memaory barriers lie at the lowest level of synchronization primitives. Memory barriers lie at the lowest level of synchronization primitives.

Where are they useful?
@ when several processes implement an automaton and . ..

Memory Consistency Wrapping Up 42/ 46 Memory Consistency Wrapping Up 42 / 46

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata

@ when blocking should not de-schedule threads

@ often used in operating systems

Memory Consistency Wrapping Up

I

42/48

i

42/ 48

[

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads

42148
Discussion m

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?

Memory Consistency Wrapping Up

42 /46

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?
@ difficult to get right, possibly inappropriate except for specific, proven

algorithms
Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven
algorithms

@ often synchronization with locks is as fast and easier
@ too many fences are costly if storef/invalidate buffers are bottleneck

Memory Consistency Wrapping Up

I

42/48

i

42/ 48

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven
algorithms

@ often synchronization with locks is as fast and easier

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven
algorithms

@ often synchronization with locks is as fast and easier
@ too many fences are costly if store/invalidate buffers are bottleneck
What do compilers do about barriers?

Memory Consistency Wrapping Up

[

42/ 46

Ul

42 /46

I

Discussion
Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?
@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?
@ difficult to get right, possibly inappropriate except for specific, proven
algorithms
@ often synchronization with locks is as fast and easier
@ too many fences are costly if storef/invalidate buffers are bottleneck
What do compilers do about barriers?

@ C/C++: it's up to the programmer, use vglgtile for all thread-common
variables to avoid optimization that are only correct for sequential
programs

@ C++11: use of atgmic variables will insert memory barriers

42746
o A Fa s i ¢
% =1 9:4 aM[?""f)
amed(x=21) (s =20)
ot) -
o A x=A1 M(x:&‘l) ""”"‘l(? 5-‘0)
obm
» o
g
e
cen s 4=1
At
7 9
S
cene 431 Oroed [ﬂ =:4) M()«"’o)
nLM co
) b3
-4

[

Discussion
Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?
@ when several processes jmplement an automaton and . ..
@ synchronization means}’oﬂordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating sysfems
Why might they not be approprélte’?
@ difficult to get right, possibly mapprolﬁlate except for specific, proven
algorithms
@ often synchronization with locks is as fast and easier
@ too many fences are costly if sfore/invalidate buffers are bottleneck
What do compilers do about barriefs?
@ C/C++: it's up to the programmer, use volatile for all thread-common
variables to avoid optimization that are only corfect for sequential
programs

@ C++11: use of atomic variables will insert mempry barriers

@ Java,Go,...: the runtime system must guarantee this
e
o A (fa 5 . CPu
1 = & Ja =A S [y "-’1)
2 ameb(x=21) { assaty (1 =20)
3 ot 0]
CA A x=1 Mv-’f(x=<1)7‘ vn\”"l(#)
m‘:ﬂ & / FTY Y _f
S0 N /%o I
2 T4} 77
ik I
crus 3= E | .
;e §’</ Tma)|/ #
v/
§ 1 W(k‘::a)
Cﬁd‘f (.J:..A Q‘? ==4, .
Yo So / ! \ l// [v/ 1
q 2 / / : 1/ /T
4 {{s} & Ky /

JU G

/
000 —7/— {lau
Qop o0 pet W05 300080 g0

<P
Future Many-Core Systems: NUMA I Future Many-Core Systems: NUMA i
Symmetric multi-processing (SMP) has its limits: Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus @ a memory-intensive computation may cause contention on the bus
@ the speed of the bus is limited since the electrical signal has to travel to @ the speed of the bus is limited since the electrical signal has to travel to
all participants all participants
@ point- int connections are faster than a bus, but do not provide @ point-to-point connections are faster than a bus, but do not provide
possibility of forming consensus possibility of forming consensus

~+ use a bus locally, use point-to-point links globally: NUMA

Memory Consistency 44 /46 Memory Consistency 44/ 46

Overhead of NUMA Systems i

Communication overhead in a NUMA system.
@ Processors in a NUMA system

may be fully or partially
connected.

@ The directory of who stores an
address is partitioned amongst

Y ¥ processors.
Memory % > H Kermory . s
Intertace, § | Processor [ocessar | 3 meiae A cache miss that cannot be satisfied
] r 1a by the local memory at A:
vl 4 y @ A sends a retrieve request to
Memory % - B Memary i h d'
ooy 8 processor [~ processor Y Interface pI‘OCessor B OWnlngt e II‘eCtory

@ B tells the processer€-wheholds
the content

@ (sends data (or status) to A and
« sends acknowledge to B
@ B completes transmission by an
acknowledge to A

source: [Intel(2008)]

Memory Consistency

45/ 46

Tl

References

D> Intel.

An introduction to the intel quickpath interconnect.

¥ L. Lamport.
Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM

¥ P E. McKenny.
Memory Barriers: a Hardware View for Software Hackers.

46 /46

Memory Consistency

Overhead of NUMA Systems T

Communication overhead in a NUMA system.
- @ Processors in a NUMA system

may be fully or parti
connected. %

@ The directory of who stores an
address is partitioned amongst

i

Y processors.
3 . Memon . . .
gl § | Proesr mossr | 4 meiss A cache miss that cannot be satisfied
by the local memory at A:
} 1£> @ A sends a retrieve request to
L A lemaory - T .
o7 CmmZ‘___.:Q - processor_B-owning the directory
- /\ @ B tells the processor C who holds
the content
- — @ C sends data (or status) to A and
: i t . sends acknowledge to B
o . .
@ B completes transmission by an
acknowledge to A
source: [Intel(2009)]
m 45 /46

Fle Edit Wiew Go Bookmarks Help

€Y Previous 45 (179 of 179)

References U

™ Intel

Anintroduction to the intel quickpath interconnect.

™ L. Lamport.
Time, Clocks, and the Ordering of Events in a Distributed System.

Commur. AGM,

@ P E. McKenny.
Memory Barriers: a Hardware View for Software Hackers.

1mesipdf— Programmi .

Why Memory Barriers are not Enough

Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
ansitions D
@ for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

Motivation 2/a

Atomic Executions, Locks and Monitors

Why Memory Barriers are not Enough

Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
@ for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

Need a mechanism to update these pieces of memory as a single atomic
execution:

@ several values of the objects are
azl,b=1 used to compute new value
7 nform

\} @ certain information form.the thread
a
¥

flows into this computation

@ certain information flows from the

computation to the thread

Motivation 2/a

Atomic Executions, Locks and Monitors

Why Memory Barriers are not Enough

Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
o for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure_mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

2141
Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an_I/O entity

anE—

Atomic Executions, Locks and Monitors Motivation 3/41

Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an I/O entity
» afile can be modified through a shared handle
@ for each resource an invariant must be retained

M— -

Motivation

Atomic Executions, Locks and Monitors

Atomic Executions

A concurrent program consists of several threads that share commaon
resources:

@ resources are often pieces of memory, but may be an /O entity
» afile can be modified through a shared handle

@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

@ during an update, an invariant may be broken
@ an invariant may span several resources

Motivation

Atomic Executions, Locks and Monitors

Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memaory, but may be an I/O entity
» afile can be modified through a shared handle

@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

@ during an update, an invariant may be broken

341
Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an I/O entity
» afile can be modified through a shared handle

@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

@ during an update, an invariant may be broken
@ an invariant may span several resources
@ -~ several resources must be updated together to ensure the invariant

3/4 Atomic Executions, Locks and Monitors Motivation

Overview [Overview UL

We will address the established ways of managing synchronization. We will address the established ways of managing synchronization.
@ present techniques are available on most platforms @ present techniques are available on most platforms
@ likely to be found in most existing (concurrent) software

Atomic Executions, Locks and Monitors Motivation 4/41 a/4
Overview i overview i
We will address the established ways of managing synchronization. We will address the esfablished ways of managing synchronization.

@ present techniques are available on most platforms @ present techniques are available on most platforms

@ likely to be found in most existing (concurrent) software @ likely to be found in most existing (concurrent) software

@ techniques provide solutions to solve common concurrency tasks @ techniques provide solutions to solve commaon concurrency tasks

@ techniques are the source of common concurrency problems @ techniques are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, C# and other
imperative languages.

Atomic Executions, Locks and Monitors Motivation 4/41 Atomic Executions, Locks and Monitors Motivation a/4

Overview

We will address the established ways of managing synchronization.
@ present techniques are available on most platforms
@ likely to be found in most existing (concurrent) software
@ techniques provide solutions to solve common concurrency tasks
@ techniques are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, C# and other
imperative languages.

Learning Outcomes
@ Principle of Atomic Executions
© Wait-Free Algorithms based on Atomic Operations
© _Locks: M maph nitor
© Deadlocks: Concept and Prevention

4/4

i

Motivation

Atomic Executions, Locks and Monitors

Atomic Execution: Varieties

Definition (Atomic Execution)

A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:
Wait-Free : an atomic execution always succeeds and never blocks
Lock-Free : an atomic execution may fail but never blocks
.
Locked : an atomic execution always succeeds but may block the thread
Transaction : an atomic execution may fail (and may implement recovery)
'h-q_____.-—-

Motivation 5/41

Atomic Executions, Locks and Monitors

[

Atomic Execution: Varieties

Definition (Atomic Execution)

A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

5/41

Ul

Atomic Executions, Locks and Monitors Motivation

Atomic Execution: Varieties

Definition (Atomic Execution)

A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:
Wait-Free : an atomic execution always succeeds and never blocks
Lock-Free : an atomic execution may fail but never blocks
Locked : an atomic execution always succeeds but may block the thread
Transaction : an atomic execution may fail (and may implement recovery)

These classes differ in

y amount of data they can access during an atomic execution
——————

/ expressivity of operations they allow
/granularity of objects in memory they require

5/41

Atomic Executions, Locks and Monitors Motivation

Wait-Free Updates R L]
Which operations on a CPU are atomic executions?
Program 3 _-
Program 2
Program 1 jg= ;. int tmp = i;
i++; i = 1-;-k;]_ = J:
j = tmp;
-
Atomic Executions, Locks and Monitors Wait-Free Atomic Executions 6/41
Wait-Free Updates A
Which operations on a CPU are atomic executions?
Program 3
Program 1 Pr?grar-n 2 int tmp =
i . J = abj s s
. L= itk; -,
we§_= Z J P;
AnéWér"?

“o nowg by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions

The programs can be_atomic executions:
- <

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

6/41

Wait-Free Updates

Which operations on a CPU are atomic executions?

Proaram 2 Program 3
Program 1 _g) int tmp =
i i J = g s s
faae i= i+k; oL
. 1 = e
Answer:

@ none by default (even without store and invalidate buﬂers@
@ but all of them can be atomic executions

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

Wait-Free Updates

Which operations on a CPU are atomic executions?

6/41

Program 2 Al
Program 1 .g . int tmp =
- j=1; i o= s
1 i= i+k; b
j = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions

The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)

@ most CPUs can lock the cache for the duration of an instruction; on x86:

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

6/41

Wait-Free Updates]

Which operations on a CPU are atomic executions?

oG Program 3
Program 1 o int tmp = i;
. . Jj = 1i; s s
L i= i+k; T
j = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.qg. declare as volatile)
@ most CPUs can lock the cache for the duration of an instruction; on x86:
@ Program_1 can be implemented using a 1ock inc [addr_i] instruction

6/41

i

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

Wait-Free Updates

Which operations on a CPU are atomic executions?

Program 2 Program 3
Program 1 —— int tmp = i;
- Jj=1; .
il i= i+k; L
J = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)

@ but all of them can be atomic executions
The programs can be atomic executions:

@ i must be in memory (e.g. declare as volatile)

@ most CPUs can Jock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a lock inc [addr_i] instruction
"]

Program 2 can be implemented using mov eax,k;
lock xadd [addr_i],eax; mov [addr_j],eax

Program 3 can be implemented using lock xchg [addr i], [addr_j]

Wait-Free Atomic Executions 6/41

Atomic Executions, Locks and Monitors

Wait-Free Updates

Which operations on a CPU are atomic executions?

[

Program 3
p 1 Program 2) '
rogram o int tmp = i;
i i J = g s s
T i= itk; T
j = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions

The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)

@ most CPUs can lock the cache for the duration of an instruction; on x86:

@ Program 1 can be implemented using a lock inc [addr_i] instruction
@ Program 2 can be implemented using mov eax,k;
lock xadd [addr_i],eax; mov [addr_j],eax

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

Wait-Free Updates (Vﬂ?t(

Which operations on a CPU are atomic executions?

6/41

—— lm

Program 3
Program 2
Program 1 i int tmp = i;
s J‘r?;:l; r)p,/ﬁs = s
: i = i+k i ’
J = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)

@ but all of them can be atomic executions
The programs can be atomic executions:

@ i must be in memory (e.g. declare as volatile)

@ most CPUs can lock the cache for the duration of an instruction; on x86

@ Program 1 can be implemented using a lock inc [addr_i] instruction

@ Program 2 can be implemented using mov eax,k;

lock xadd [addr_i],eax; mov [addr_j],eax

@ Program 3 can be implemented using lock xchg [addr_i], [addr_j]
/N Without lock, the load and store generated by i++ may be interleaved
with a store from another processor.

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

6/41

Wait-Free Bumper-Pointer Allocation

Garbage collectors often use a bumper pointer to allocated memory:

e

char* alloc(int size) { ;];{;‘/Y
char* start = firstFree;
firstFree = firstFree + size;
if (start+size>sizeof(heap)) garbage_collect();
return start;
.

}

Bumper Pointer Allocation

char heap[2°20];

char* firstFree = &heap[0];
e ———————

I

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

7ia

[

Wait-Free Bumper-Pointer Allocation
Garbage collectors often use a bumper pointer to allocated memory:
Bumper Pointer Allocation

char heap[2°20];

char* firstFree = &heap[0];

char* all oclint sizg) {
char* Egg;t = firstFree;

firstFree = firstFree + size;

garbage_collect();
return start;

}

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap
Thread-safe implementation:

@ the alloc function can be used from multiple threads when implemented
using a lock xadd [_firstFree],eax instruction

@ -~ requires inline assembler

Wait-Free Atomic Executions 7141

Atomic Executions, Locks and Monitors

