The MESI Protocol: Messages U

Script generated by TTT Moving data between caches is coordinated by sending messages

[McKenny(2010)]:

@ Read: sent if CPU needs to read from an
address

Title: Petter: Programmiersprachen (04.11.2013) @ Read Response: response to a read message,
~Carriss the data at the requested address @ b
Date: Mon Nov 04 14:16:02 CET 2013 @ Invalidate: asks others to evict a cache line
@ Invalidate Acknowledge: reply indicating that H’ } }
Duration: 91:55 min an address has been evicted

@ Read Invalidate: like Read + Invalidate (also I,
Pages: 67 called “read with intend to modify”) @ «—k) i ‘

@ Writeback: info on what data has been sent to
e e .
main memory

Additional store and read messages are transmitted to main memory.

Memory Consistency 20/46
MESI Example (1) T MESI Example: Happened Before Model U

Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E

Thread A Thresd -1 =1
o Q- g A g a2 —

while (b == 0) {}; 5 ,.-"’v
S ;

S

m
t

a i 1

b=1 assert (a == 1); 2 b 9 _r:vA A
state- | CPUA CPUB | RAM | message T 22 C2 L%
ment | a | b |a| b ||a|b % _{.fg.’ o 4 o 3 B S
A1 ST TR0 0 ead invalidate of & from CPU A S35 § _9—; g = 2
) : i : : -hjoyo invalidate ack. of a from CPU B s 53 «-:; ;
T OO read response of a=0 from RAM N B :

:) : 0101 readof b from CPU B
) 010 reaq responsF with b=0 from RAM
| - - —
! OB 11 01 0} /oad invalidate of b from CPU A Observations:
I OE||0]|O invalidate ack. of b from CPU B @ each memory access must complete before executing next instruction
! SO0 reaq response of b=0 from CPU B ~ add edge
M -1joflo @ second execution of test b==0 stays within cache ~~ no traffic
Memory Consistency 21/486

Memory Consistency The MESI Protocoel 23/46

Out-of-Order Execution

i Out-of-Order Execution U
performance problem: writes always stall performance problem: writes always stall
Thread A Thread B Thread A Thread B
a 1; A while (b == 0) {}; B.1 a 1; A while (b == 0) {}; B.1
b = 1; A assert (a == 1); B.2 b =1; A assert (a == 1) ; B.2
y y

inalidate.........

~ CPU A should continue executing after a = 1 |
o I
] i 2 : :
S a 4 S 5
B b== - b== a== B b== b== gy a==
Memory Consistency 26/46 Memory Consistency 26/46
Store Buffers T Store Buffers T
Goal: continue execution after cache-miss write operation Goal: continue execution after cache-miss write operation
— e ——
@ put each write into a store buffer @ put each write into a store buffer
CPU A CPUB and trigger fetching of cache Tine CPU A CPUB and trigger fetghlng of caghe line
@ once a cache line has arrived,
L 1 1 I apply relevant writes
storele- store L store store
buffen ®— puffer buffer. ®— buffer
cache cache cache cache
[| [|
| |
Memory Memory
Memory Consistency 27/48 Memory Consistency

Out-of-Order Execution of Stores

27/46

Store Buffers

Memory

Memory Consistency

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer

‘Out-of-Order Execution of Stores

27/46

Store Buffers

Memory

Memory Consistency

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer

CPU A CPUB and trigger fetghmg of caghe line CPU A CPUB and trigger fetghlng of caghe line
@ once a cache line has arrived, @ once a cache line has arrived,
apply relevant writes apply relevant writes
store| m store » store buffer is a queue store store » store buffer is a queue
buffer ®— buffer buffer] ®— buffer » two writes to the same location
| | | are not merged
cache cache cache cache

Out-of-Order Execution of Stores

27/46

Store Buffers Store Buffers

Goal: continue execution after cache-miss write operation Goal: continue execution after cache-miss write operation

@ put each write into a store buffer
and trigger fetching of cache line

@ put each write into a store buffer
and trigger fetching of cache line

CPUA CcPUB i i CPUA CPUB i .
@ once a cache line has arrived, @ once a cache line has arrived,
wde apply relevant writes I apply relevant writes
/L store store » store buffer is a queue L store sfore » store buffer is a queue
-buffer ®— puffer » two writes to the same location buffer ®— buffer » two writes to the same location
| | are not merged | are not merged

cache

cache

Memory

Memory Consistency

o /\ sequential consistency per
CPU is violated unless

Out-of-Order Execution of Stores

27/48

cache

cache

Memory

Memory Consistency

o /\ sequential consistency per
CPU is violated unless
» each read checks store buffer
before cache

Out-of-Order Execution of Stores

27/46

Store Buffers L Happened-Before Model for Store Buffers T

Thread A Thread B
Goal: continue execution after cache-miss write operation)
{ a=1; while (b == 0) {}}
@ put each write into a store buffer b =1; assert (a == 1);
and trigger fetching of cache line
CPUA CPUB , , e a- . e o :
e once a cache line has arrived, Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |
apply relevant writes A _ a=1 =
store store » store buffer is a queue § store "'*5‘__-1 % 4?" . N
buffer @ buffer, > two writes to the same location @q S0 TN' A

| | are not merged q;c? b Eo Vi1 1

[[© Lo

cache cache o /N sequential consistency per ISR Y
I : CPU is violated unless ' 3 o

I » each read checks store buffer "cg %E

before cache £ 3

Memory » on hit, return the youngest value r3

is waiti i] il
that is waiting to be written U,Qa So . . ;'*I

§HE "
. EEN
B o P
Memory Consistency 27146 Memory Consistency 28/45
T Explicit Synchronization: Write Barrier U

Explicit Synchronization: Write Barrier

Overtaking of messages is desirable and should not be prohibited in general. Overtaking of messages is desirable and should not be prohibited in general.
@ store buffers render programs incorrect that assume sequential

@ store buffers render programs incorrect that assume sequential
consistency between different CPUs consistency between different CPUs
@ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted

29/48 Memory Consistency Out-of-Order Execution of Stores 29/46

Memory Consistency ‘Out-of-Order Execution of Stores

Explicit Synchronization: Write Barrier T Explicit Synchronization: Write Barrier i

Overtaking of messages is desirable and should not be prohibited in general. Overtaking of messages is desirable and should not be prohibited in general.
@ store buffers render programs incorrect that assume sequential @ store buffers render programs incorrect that assume sequential
consistency between different CPUs consistency between different CPUs
@ whenever two stores in one CPU must appear in sequence at a different @ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted CPU, an explicit write barrier has to be inserted
@ Intel x86 CPUs provide the sfence instruction @ Intel x86 CPUs provide the sfence instruction

@ awrite barrier marks all current store operations in the store buffer

Memory Consistency 29746 Memory Consistency 29/46
Explicit Synchronization: Write Barrier T Explicit Synchronization: Write Barrier U
Overtaking of messages is desirable and should not be prohibited in general. Overtaking of messages is desirable and should not be prohibited in general.
@ store buffers render programs incorrect that assume sequential @ store buffers render programs incorrect that assume sequential
consistency between different CPUs consistency between different CPUs
@ whenever two stores in one CPU must appear in sequence at a different @ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted CPU, an explicit write barrier has to be inserted
@ Intel x86 CPUs provide the sfence instruction @ Intel x86 CPUs provide the sfence instruction
@ a write barrier marks all current store operations in the store buffer @ a write barrier marks all current store operations in the store buffer
@ the next store operation is only executed when all marked stores in the @ the next store operation is only executed when all marked stores in the
buffer have completed buffer have completed

@ a write barrier after each write gives sequentially consistent CPU
behavior (and is as slow as a CPU without store buffer)

Memory Consistency ‘Out-of-Order Execution of Stores 29/46 Memory Consistency Out-of-Order Execution of Stores 29/46

Explicit Synchronization: Write Barrier (L Invalidate Queue [

Invalidation of cache lines is costly:
— @ all CPUs in the system need to send an acknowledge
Overtaking of messages is desirable and should not be prohibited in general.

@ _stere buffers render programs incorrect that assume sequential
consistency between different CPUs

@ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted

@ Intel x86 CEOUS pI‘OVIdWE,‘/Sfence instruction 91
@ a write barrier marks all current store opmtlogs,m the store buffer

@ the next store operation is only executed when all marked stores in the
buffer have completed

@ a write barrier after each write gives sequentially consistent CPU
behavior (and is as slow as a CPU without store buffer)

~ use (write) barriers only when necessary
So l

3n
T M
Memory Consistency 29/46 Memory Consistency 31/46

Invalidate Queue (L Invalidate Queue [T
Invalidation of cache lines is costly: Invalidation of cache lines is costly:

@ all CPUs in the system need to send an acknowledge @ all CPUs in the system need to send an acknowledge

@ invalidating a cache line competes with CPU accesses @ invalidating a cache line competes with CPU accesses

@ a cache-intense computation can fill up store buffers in other CPUs
S R

Memory Consistency Qut-of-Order Execution of Loads 31/46 Memory Consistency Out-of-Order Execution of Loads 31/46

Invalidate Queue

Invalidation of cache lines is costly:

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

Invalidate Queue

Invalidation of cache lines is costly:

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

CPU A CPUB ~» immediately acknowledge an invali- CPU A CPU B ~ immediately acknowledge an invali-
dation and apply them later dation and apply them later
t t . . @ put each invalidate message into
store store store store imvali
buffer ®— buffer buffer ®— buffer an invalidate queue
| | |]
cache cache cache cache
I I I I
invalidate| invalidate invalidate invalidate
queue queue queue queue
(A Y T I [
= I I
(e
Memory Memory

Memory Consistency

Out-of-Order Execution of Loads

31/46

Memory Consistency

‘Out-of-Order Execution of Loads

31/46

Invalidate Queue
Invalidation of cache lines is costly:

Invalidate Queue
Invalidation of cache lines is costly:

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

CPU A CPUB ~» immediately acknowledge an invali- CPUA CPUB ~~ immediately acknowledge an invali-
dation and apply them later dation and apply them later
. . @ put each invalidate message into ; l @ put each invalidate message into
siore store invali store store nval
buffer ®— buffor tan invalidate queue buffer ®— butior f*:m invalidate queue
| | @ if a MESI message needs to be l 1 @ if a MESI message needs to be
sent regarding a cache line in the sent regarding a cache line in the
cache cache invalidate queue then wait until cache cache invalidate queue then wait until
| [the line is invalidated I [the line is invalidated
invalidate invalidate invalidate invalidate ;
queue queue queue queue o /N local read and writes do not
[| [| [consult the invalidate queue
|
Memory Memory

Memory Consistency

Out-of-Order Execution of Loads

31/486

Memory Consistency

Out-of-Order Execution of Loads

31/46

Invalidate Queue T Explicit Synchronization: Read Barriers T

Invalidation of cache lines is costly:
° gll CFU§ in the system need to send .an acknowledge Read accesses do not consult the invalidate queue.
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPU@,

@ might read an out-of-datevatue

CPU A UB ~ immediately acknowledge an invali-
< 5 dation and apply them later
t 5; . '/'t"' @ _put each invalidate message into
store store £24n invali
buffer buffer Tan invalidate queue
l 1 @ if a MESI message needs to be
sent regarding a cache line in the
cache cache invglidaje queue then wait until
T T the fine is invalidated
'”&’Sgﬂg‘te mv%cjgte o /N local read and writes do not
el consult the invalidate §ue
@ What about sequential
consistency?
Memory Consistency 31/46 Memory Consistency 33/46
Explicit Synchronization: Read Barriers T Explicit Synchronization: Read Barriers U
Read accesses do not consult the invalidate queue. Read accesses do not consult the invalidate queue.
@ might read an out-of-date value @ might read an out-of-date value
@ need a way to establish sequential consistency between writes of other @ need a way to establish sequential consistency between writes of other
processors and local reads processors and local reads

@ insert an explicit read barrier before the read access

Memory Consistency Qut-of-Order Execution of Loads 33/46 Memory Consistency Out-of-Order Execution of Loads 33/46

Explicit Synchronization: Read Barriers T Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.

Explicit Synchronization: Read Barriers T Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.

might read an out-of-date value °

need a way to establish sequential consistency between writes of other]

processors and local reads

insert an explicit read barrier before the read access 9

Intel x86 CPUs provide the 1 fence instruction °
—_

Memory Consistency Out-of-Order Execution of Loads 33/46

might read an out-of-date value °

need a way to establish sequential consistency between writes of other °
processors and local reads

insert an explicit read barrier before the read access

Intel x86 CPUs provide the Lfence instruction

a read barrier marks all entries in the invalidate queue

the next read operation is only executed once all marked invalidations
have completed

a read barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)

Read accesses do not consult the invalidate queue.

might read an out-of-date value

need a way to establish sequential consistency between writes of other
processors and local reads

insert an explicit read barrier before the read access
Intel x86 CPUs provide the 1 fence instruction

a read barrier marks all entries in the invalidate queue

the next read operation is only executed once all marked invalidations
have completed

i

Memory Consistency ‘Out-of-Order Execution of Loads 33/46

Read accesses do not consult the invalidate queue.

might read an out-of-date value

need a way to establish sequential consistency between writes of other
processors and local reads

insert an explicit read barrier before the read access

Intel x86 CPUs provide the 1fence instruction

a read barrier marks all entries in the invalidate queue

the next read operation is only executed once all marked invalidations
have completed

a read barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)

~+ match each write barrier in one process with a read barrier in another
process —

Memory Consistency Qut-of-Order Execution of Loads 33/46

Memory Consistency ‘Out-of-Order Execution of Loads

i

33/46

Happened-Before Model for Read Fences

Summary: Weakly-Ordered Memory Models U]
Thread A Thread B |
a = 1; while (b == 0) {}; Modern CPUs use a weakly-ordered memory mode!:
sfence () ; , 1fence(); @ reads and writes are not synchronized unless requested by the user
b = 1; J assert (a == 1);
y,
sfence=1_
gy N f Ple <1
o 2 3
G D =
¢ £l |
I N B W
Y . 131
JEE T S
AN W
b==0 = lfence a==1

Memory Consistency Out-of-Order Execution of Loads

34/46

Memory Consistency

Summary: Weakly-Ordered Memory Models

35/46

i

T Summary: Weakly-Ordered Memory Models

Modern CPUs use a weakly-ordered memory model:

@ reads and writes are not synchronized unless requested by the user

Modern CPUs use a weakly-ordered memory model:
@ many kinds of memory barriers exist with subtle differences

@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86)

pr——

Memory Consistency

Out-of-Order Execution of Loads 35/46

Memory Consistency

Out-of-Order Execution of Loads 35/46

Summary: Weakly-Ordered Memory Models][

Modern CPUs use a weakly-ordered memory model.
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86) B

@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

Out-of-Order Execution of Loads 35/46

[l

Memory Consistency

Summary: Weakly-Ordered Memory Models

Modern CPUs use a weakly-ordered memory model:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86)

@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

@ usethe volatile keyword in C/C++

@ in the latest C++ standard, an access to a volat ile variable will
automatically insert a memory barrier

@ otherwise, inline assembler has to be used
~» memory barriers are the “lowest-level” of synchronization

Memory Consistency

Out-of-Order Execution of Loads 35/46

Summary: Weakly-Ordered Memory Models T|U]|[]

Modern CPUs use a weakly-ordered memory mode!:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86)

@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

@ usethe volatile keyword in C/C++

Memory Consistency 35/46
CPd A xzA Cries gt i
. %,,fcxccfl] » <l haﬂ:maﬁﬂ\
MC‘H ==0) &:;-:4 o
. de=A ek (==1) ggend({y =20)
% N m:a/\ {]
X So I \ Tmﬂ @
= =l
o A

(¥ "Q \(’l
{, a4
7 /!

L B VA
4=2

w=1

Summary: Weakly-Ordered Memory Models

Modern CPUs use a weakly-ordered memory model:

@ reads and writes are not synchronized unless requested by the user

-=e—rrany kinds of memory barriers exist with subtle differences

most systems provide on barrier thatfis bott¥, read and write (e.g. mfence

on x86) -

@ ahead-of-tinee imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

@ use the volatile keyword in G/C++

@ inthe latest C++ standard, an access to a volatile variable will
automatically insert a memory barrier

@ otherwise, inline assembler has to be used
~+ memory barriers are the “lowest-level” of synchronization

Out-of-Order Execution of Loads

Memory Consistency

The Idea Behind Dekker

Communication via three variables:
@ flag[i]=true process P; wants to enter its critical section
@ turn=i process P; has priority when both want to enter

T The Idea Behind Dekker

Communication via three variables:
@ flag[i]=true process P; wants to enter its critical section
@ turn=i process P; has prority when both want to enter

————

E0: In process P;:
flag[0] = true; @ if P,_; does not want to enter,
while (flag[l] == true) proceed immediately to the critical
if (turn 1= 0) { section "
flag[0] = false;
while (turn != 0) {
N y _‘
}
flag[0] = true;
1
[/ critical = 1
turn = 1;
flag[0] = false;

35/46 37/46

The Dekker Algorithm

Memory Consistency

The Idea Behind Dekker

Communication via three variables:
@ flag[i]=true process P; wants to enter its critical section
@ turn=i process P; has priority when both want to enter

PO: In process P;: PO: In process P;:
flag([0] = true; @ if P,_; does not want to enter, flag[0] = true; @ if P,_; does not want to enter,
while (flag[l] == true) proceed immediately to the critical while (flag[l] == true) proceed immediately to the critical
if (turn '= 0) { section if (turn !'= 0) { section
kgl = fafea @ - flag[i] is a lock and may be fll:f‘i[o] - fé-ll-f-ea ® - flag[i] is a lock and may be
el —WE implemented as such while (turn -) A implemented as such

Aurn =1;
flag[0] = false;

The Dekker Algorithm

Memory Consistency

: @ if P,_; also wants to enter, wait for
turn to be setto i

flag[0] =_tfrue;
}
(11
ritical i I
turn = 1;
flag[0] = false;

The Idea Behind Dekker L A Note on Dekker’s Algorithm i

Communication via three variables: Dekker’s algorithm has the three desirable properties:
@ flag[i]=true process P; wants to enter its critical section @ ensure mutual exclusion: at most one process executes the critical
® turn=i process P; has priority when both want to enter section

@ deadlock free: the process will never wait for each other

PO: In DF?CGSS Pi: @ free of starvation: if a process wants to enter, it eventually will
flag[0] = true; @ if P,_; does not want to enter,
while (flag[l] == true) proceed immediately to the critical
if (turn != 0) { section
flag[0] = false;

@ - flag[i] is a lock and may be
implemented as such

o if P,_; also wants to enter, wait for
turn tobe setto i

while (turn != 0) {
FaY T

}
flag[0] = true;

} @ while waiting for turn, reset
// critical section flag[i] to enable P,_; to progress
turn =1; @ algorithm only works for two
flag[0] = false; processes
Memory Consistency 37/46 Memory Consistency 38/46
A Note on Dekker’s Algorithm T A Note on Dekker’s Algorithm U
Dekker’s algorithm has the three desirable properties: Dekker’s algorithm has the three desirable properties:
@ ensure mutual exclusion: at most one process executes the critical @ ensure mutual exclusion: at most one process executes the critical
section section
@ deadlock free: the process will never wait for each other @ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will @ free of starvation: if a process wants to enter, it eventually will
applications for Dekker: implement a (map o Told) operation@ncurrently applications for Dekker: implement a (map o fold) operation concurrently
T acc = init(); 1 C:) T acc = init ();
for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,i); D @ (2; <T,U> (acc,tmp) = f(age,1);
g (tmp, i); fj’\:] & (® g (Lmp, 1);
} 1
n. .G @
D @ @ @ accumulating a value by performing two operations £ and g in sequence

Memory Consistency The Dekker Algorithm 38/46 Memory Consistency The Dekker Algorithm 38/46

A Note on Dekker’s Algorithm T A Note on Dekker’s Algorithm T

Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will

Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock Tree: the process will never wait for each other
~=9—free of starvation: if a process wants tesenter, it eventually will

applications for Dekker: implement a (map o fold) operation concurrently applications for Deldser: implement a (map o foldy=eperation concurrently
T acc = init (); T acc ~==init (); p——
for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
<T,U> (ESF’EEE) flacc,i); <T,U> (acc,tmp) = f(acc,i);
g(tmp, 1); - g(tmp, 1);
b = T

}
@ accumulating a value by performing two operations £ and g in sequence
@ the calculation in £ of the ith iteration depends on iteration ;i — 1

@ non-trivial program to parallelize

@ accumulating a value by performing two operations £ and g in sequence
@ the calculation in £ of the ith iteration depends on iteration i — 1

@ non-trivial program to parallelize

@ idea: use two threads, one for £ and one for g

Memory Consistency The Dekker Algorithm 38/46 Memory Consistency

The Dekker Algorithm 38/46

Concurrent Fold T Concurrent Fold U

Create an n-place buffer for communication between processes P and P,.
T acc = init ()
Buffer<U> buf

Create an n-place buffer for communication between processes P; and P,.

5 T acc = init ()
= buffer<T>(n); // scme

7

locked buffer Buffer<U> buf buffer<T>(n); // some locke ffer
-
Pf: Pg: Pf: Pg:
for (int i1 = 0; i<ec; i++) { for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) | for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,1i); T tmp = buf.get(); <T,U> (acc,tmp) = f (acc,i); T tmp = buf.get ();
buf .put (tmp) ; g(tmp, 1); buf.put (tmp) ; g(tmp, 1i);
} } } p=

If £ and g are similarly expensive, the parallel version might run twice as fast. If £ and g are similarly expensive, the parallel version might run twice as fast.

But busy waiting is bad!
@ the cores might be idle anyway: no harm done (but: energy efficiency?)
@ f can generate more elements while busy waiting

Memory Consistency The Dekker Algorithm 39/46 Memory Consistency

The Dekker Algorithm 39/46

Concurrent Fold T Generalization to fold o fold
Create an n-place buffer for communication between processes P and P,. Observation: ¢ might also manipulate a state, just like f
T acc = init(); :) .
Buffer<U> buf = buffer<T>(n); some locked buffer stream processing
Pf: Pg: @ general setup in signal/data processing
for (int i = 0; i<c; i++) | for (int i = 0; i<c; i++) { @ data is manipulated in several stages
T; U~ T{&cc, tmp) = f (acc,i); T tmp = buf.get(); @ each stage has an internal state

buf.put (tmp); ~—m-———"" — gl(tmp, 1i); i . .
} } @ an item completed in one stage is passed on to the next stage
If £ and g are similarly expensive, the parallel version might run twice as fast. Use of Dekker’s algorithm:

But busy waiting is bad! @ could be used to pass information between stages
@ the cores might be idle anyway: no harm done (but: energy efficiency?)
@ f can generate more elements while busy waiting
@ g might remove items in advance, thereby keeping busy if f is slow

Memory Consistency The Dekker Algorithm 39/46 Memory Consistency The Dekker Algorithm

Generalization to fold o fold T Generalization to fold o fold

Observation: g might also manipulate a state, just like f. Observation: g might also manipulate a state, just like f.

~+ stream processing
@ general setup in signal/data processing
@ data is manipulated in several stages
@ each stage has an internal state
@ an item completed in one stage is passed on to the next stage

~ stream processing
@ general setup in signal/data processing
@ data is manipulated in several stages
@ each stage has an internal state
@ an item completed in one stage is passed on to the next stage

Use of Dekker’s algorithm:
@ could be used to pass information between stages
@ but: fairness of algorithm is superfluous

» producer does not need access if buffer is full
» consumer does not need access if buffer is empty

Use of Dekker’s algorithm:
@ could be used to pass information between stages

@ but: fairness of algorithm is superfluous

The Dekker Algorithm

Memory Consistency The Dekker Algorithm 40/ 46 Memory Consistency

40/46

40/46

Generalization to fold o fold T

Dekker’s Algorithm and Weakly-Ordered [
Problem: Dekker's algorithm requires sequentially consistency.
Observation: ¢ might also manipulate a state. just like £ Idea: insert memory barriers between all variables common to both threads.
PO:
~ stream processing flag[0] = true; .
@ general setup in signal/data processing sfence () ; ® inserta read memory
q . ipulated i | while (lfence(), flag[l] == true) barrier 1fence () in front
e data is manipulated in several stages if (lfence(), turn != 0) { of every write to common
@ each stage has an internal state flag[0] = false; variables
@ an item completed in one stage is passed on to the next stage sfence () ;
while (lfence(), turn != 0) {
Use of Dekker's algorithm: : busy wall
@ could be used to pass information between stages flag[0] = true;
@ but: fairness of algorithm is superfluous sfence () ;
» producer does not need access if buffer is full }
» consumer does not need access if buffer is empty / critical
@ -~ gpecialize algorithm? turn = 1;
sfence () ;

flag[0] = false;

Memory Consistency The Dekker Algorithm 40/ 46

Memory Consistency 41/46
Generalization to fold o fold i A Note on Dekker’s Algorithm i
, , , , , Dekker’s algorithm has the three desirable properties:
Observation: g might also manipulate a state, just like f. . "
@ ensure mutual exclusion: at most one process executes the critical
stream processin section
P , g , , @ deadlock free: the process will never wait for each other
@ general setup in signal/data processing
@ data is manipulated in several stages = _
° egg]gage has an internal state I -
—_—
@ an item completed in one stage is passed on to the next stage -
Use of Dekker’s algorithm:

@ could be used to pass information between stages
@ but: fairness of algorithm is superfluous

» producer does not need access if buffer is full

> consumerﬁs nofmeed access if buffer is empty

&
@ -~ specialize

gorithm?

Memory Consistency The Dekker Algorithm 40/46

Memory Consistency The Dekker Algorithm 38/46

Dekker’s Algorithm and Weakly-Ordered

Problem: Dekker’s algorithm requires sequentially consistency.

i

Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;
sfence () ; @ insert a read memory
while (lfence (), flag[l] == true) barrier 1 fence () in front
if (1fence(), turn != 0) { of every write to common
flag[0] = false; variables
sfence () ; @ insert a write memory
while (lfence(), turn != 0) { barrier sfence () after
busy wait writing a'variable that is
} read in the other thread
flag[0] = true;
sfence () ;
}
critical 1
turn = 1;
sfence () ; —
flag[0] = false;

Memory Consistency The Dekker Algorithm

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata

Memory Consistency Wrapping Up

41/46

[l

42/46

Discussion
Memory barriers lie at the lowest level of synchronization primitives.

Memory Consistency Wrapping Up

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?

Memory Consistency Wrapping Up

i

42/46

42/46

