R 754 TECHNISCHE UNIVERSITAT MUNCHEN m
§§§§ FAKULTAT ~ FUR INFORMATIK

Script generated by TTT
Programming Languages

Title: Petter: Programmiersprachen (21.10.2013) Concurrency: Mermory Gonsistency

Date: Mon Oct 21 14:24:40 CEST 2013

Duration: 76:47 min

Dr. Axel Simon and Dr. Michael Petter
Pages: 75 Winter term 2013

Memory Consistency 1/46
Need for Concurrency T Need for Concurrency T
Consider two processors: Consider two processors:
@ in 1997 the Pentium P55C had 4.5M transistors @ in 1997 the Pentium P55C had 4.5M transistors
@ in 2006 the [tanium 2 had 1700M transistors @ in 2006 the /fanium 2 had 1700M transistors
~= Intel could have built a processor with 256 Pentium cores in 2006 ~+ Intel could have built a processor with 256 Pentium cores in 2006
However:

@ most programs are not inherently parallel —
» ~~ parallelizing a program is between difficult and impossible —
@ correctly communicating between different cores is challenging —
» ~= correctness of concurrent communication is very hard
» low-level aspects: locking algorithms must be correct ——
» high-level aspects: program may deadlock ==—
@ aprogram on n COres runs m < n times faster

» -~ all effort is voided if program runs no faster
» distributing work load is application specific

Memory Consistency 2/46 Memory Consistency 2/46

The free lunch is over B

Single processors cannot be made much faster due to physical limitations.

The free lunch is over T
Single processors cannot be made much faster due to physical limitations.

IT Roadmap Semiconductors IT Roadmap Semiconductors

2005 Roadmap 2005 Roadmap

Clock Rate (GHz)

2007 Roadmap

Clock Rate (GHz)

2007 Roadmap
Intel Single Core Intel Single Core
Intel Multicore Intel Multicorz
2001 2003 2005 2007 2009 2011 2013

2003 2005 2007 2008 2011 2013
Year

Year

Source: D. Pattarson, UC—Berkeley

But Moore’s law still holds for the number of transistors:
@ they double every 18 months for the foreseeable future
@ may translate into doubling the number of cores
@ programs have to become parallel

Source: D. Patterson, UC—Berkeley

3/46 Memory Consistency 3/46

Memory Consistency

Concurrency for the Programmer T Concurrency for the Programmer T

How is concurrency exposed in a programming language?
@ spawning of new concurrent computations
@ communication between threads
Communication can happen in many ways:
@ communication via shared memory (this lecture) =

@ atomic transactions on shared memory
@ message passing ==

How is concurrency exposed in a programming language?
@ spawning of new concurrent computations .
@ communication between threads «—-

Learning Outcomes

@ Happened-before Partial Order —-
© Sequential Consistency ———

© The MESI Cache Model ——

©Q Weak Consistency —=—

@ Memory Barriers ——

4/46

4/46 Memory Consistency

Memory Consistency

Communication between Cores

xz 0,
We consider the concurrent execution of these functions:
Thread A Thread B

void bar (void) {
while
assert (a == 1);

void foo (void) {
a=1;
b =1;

} }

(b == 0) {};

i

Communication between Cores

We consider the concurrent execution of these functions:
Thread A Thread B

void foo(void) { void bar (void) {

@ initial state of aand b is 0

Memory Consistency

a = 1; while (b == 0) {};
¢ b = 1; assert (a == 1);
} }
@ initial state of a and b is 0
@ A writes a before it writes b
5/46 Memory Consistency 5/46

Communication between Cores

We consider the concurrent execution of these functions:
Thread A Thread B

void foo (void) { void bar (void) {
a = 1;
b =1;

} }

assert(a == 1);

while (b == 0) {};

Communication between Cores

We consider the concurrent execution of these functions:
Thread A Thread B
void foo (void) { void bar (void) {
L wigle (b — 04
= 1; assert(a == 1);

} }

@ initial state of aand b is 0
@ A writes a before it writes b
@ B should see b go to one before executing the assert statement

Memory Consistency

@ initial state of a and b is 0
@ A writes a before it writes b
@ B should see b go to one before executing the assert statement
@ the assert statement should always hold
@ here the code is correct if the assert holds
~= correctness means: writing a one to,_a_@appens before reading a one ingb

5/46 Memory Consistency 5146

Strict Consistency T Strict Consistency T

Assuming foo and bar are started on two cores operating in lock-step. Assuming foo and bar are started on two cores operating in lock-step.
Then one of the following may happen: —_— Then one of the following may happen:
foo __ foo L foo L
a=‘]" b=‘|" a=1" b=14' a=1r b=1r
mem, Vo memy/ \/ mem_ Y
o2 " b2 b2 a2 b2 b2 b2 /a2
bar [|\ WERY /AR WERVERVER'

bar /| \/

Unrealistic to assume that there is only one order between memory accesses:

@ each conditional (and loop iteration) doubles the number of possible
lock-step executions

@ processors use ¢ ~ lock-step assumption is violated since cache
behavior depends on data

Memory Consistency 6/46 Memory Consistency 6/46
Strict Consistency T Events in a Distributed System T
Assuming foo and bar are started on two cores operating in lock-step. A process as a series of events [Lamport(1978)]: Given a distributed system
Then one of the following may happen: of processes P. .. ., each process P consists of events py. js
- —
foq . foo - .
"xla_zf ;\‘!Dz}r a:f ip:‘.r—
menm/ YV mem/ \V
N nA fal il il
bar [\/ V[bar [\ [\ [\

Unrealistic to assume that there is only one order between memory accesses:

@ each conditional (and loop iteration) doubles the number of possible
lock-step executions

@ processors use caches ~~ lock-step assumption is violated since cache
behavior depends on data

~ strict consistency is too strong to be realistic
~ state correctness in terms of what event may happen before another one

Memory Consistency 6/46 Memory Consistency appened-Before Relatio 746

Events in a Distributed System T

A process as a series of events [Lamport(1978)]: Given a distributed system
of processes P, ..., each process P consists of events py, pa,

Example:
Pf‘ /("7/"‘?- Fz

P _ S o
ra

R I A5 W3 T Py

@ event p; in process P happened before p; 4

Memory Consistency 7148

Wand Law (I) i

Events in time are like power of wands:

Memory Consistency 8/46

Events in a Distributed System T

A process as a series of events [Lamport(1978)]: Given a distributed system
of processes P, ..., each process P consists of events py, pa,
Example:

P_f 2 Py s
1

R r 5 W3 T Ty

@ event p; in process P happened before p;y 4

@ if p; is an event that sends a message to Q then there is some event tg; in
(that receives this message and p; happened before g;
————————______

Memory Consistency 7146

Wand Law (l) AT

Events in time are like power of wands:

beats

Memory Consisiency appened-Before Relatio 8/46

Wand Law (I) AR Wand Law (1) ST

Events in time are like power of wands: Events in time are like power of wands:

beats

L‘ e beats o ——

hence:

: ;; JE———— ”
L‘ = beats ——

~ the “heats” relation is transitive

Wand Law (1l) T The Happened-Before Relation T
Definition I
More wand laws: If an event‘f_;_ happened before an eventj_then p—q.

@ “beats” is transitive
@ “beats” is irreflexive

_
- — s
=T bewe ————
@ implies that “beats” is asymmetric: if
—_—nl -
e beats — " re—
then
e ————— el
-—--'-‘—--’—h‘
— beats ——

~ “beats” is a strict partial order

Memory Consistency 9/46 Memory Consistency ppened-Before Relatio 10/ 46

The Happened-Before Relation

Definition
If an event p happened before an event g then p— g¢.

Observe:
@ — is partial (neither p — ¢ or ¢ — p may hold)

D e

Memory Consistency

The Happened-Before Relation

Definition
If an event p happened before an event g then p — g.

Observe:
@ — is partial (neither p — ¢ or ¢ — p may hold)
@ — isirreflexive (p — p never holds)
@ — istransitive (p > gAqg—rthenp—r)
@ — is asymmetric (if p — g then =(g — p))

——re.

Memory Consistency

The Happened-Before Relation

Definition
If an event p happened before an event g then p— g.

Observe:
@ — is partial (neither p — ¢ or ¢ — p may hold)
@ — isirreflexive (p — p never holds)
@ — istransitive (p—gAqg—rthenp—r)

Memory Consistency

10/46

The Happened-Before Relation

Definition
If an event p happened before an event ¢ then p — g.

Observe:

— is partial (neither p — g or ¢ — p may hold)
@ — isirreflexive (p — p never holds)
@ — istransitive (p ~gAqg—rthenp—r)
@ — is asymmetric (if p — ¢ then =(qg — p))

~ the — relation is a strict partial order

Note: a strict partial order < differs from a (non-strict) partial order < due to:

| strict partial order | non-strict partial order |

irreflexive =(p < p) | reflexive

p=p

asymmetric antisymmetric

p=gimplies =(¢g<p) | p2grg=pimpliesp =g
e —

e ——

Memory Consistency

—_—

10/ 46

Concurrency T Concurrency T

Let a 4 b abbreviate —(a — b). Let a 4 b abbreviate —(a — b).
Definition Definition
Two distinct events p and ¢ are said to be concurrent if p 4 g and g /4 p. ’ Two distinct events p and ¢ are said to be concurrent if p 4 g and g # p. ’
—— —— —m— —
P =:i'71 A2 273 4 P 71)2 73 24
L -

@ p; — ry in the example @ p; —ry in the example [
@ p; and g5 are, in fact, concurrent since p; 4 ¢z and g; 4 p3

Memory Consistency 11/46 Memory Consistency 11/46
Ordeting T Ordering T
Let C be a logical clock that assigns a time-stamp C(p) to each event p. Let C be a logical clock that assigns a time-stamp C(p) to each event p.

L angll x— -

Definition (Clock Condition) Definition (Clock Condition)
C satisfies the clock condition if for any events p — ¢ then C(p) < C(g). ’ C satisfies the clock condition if for any events p — ¢ then C(p) < C(q). ’

e

For a distributes system the clock condition holds iff:

@ if p; and p; are events o@and pi—pjthen C(p;) < C(pj)

Q i@s thé’?ending of a messag'é by?rocess:ﬁnd mhe reception of
this message by process_(_g__then C_(,r_)) < -C__—((L)

—

Memory Consistency 12/46 Memory Consistency appened-Before Relatio 12746

Ordering T Ordering T

Let C be a logical clock that assigns a time-stamp C(p) to each event p. Let C be a logical clock that assigns a time-stamp C(p) to each event p.

C satisfies the clock condition if for any events p — g then C(p) < C(q).

Definition (Clock Condition) Definition (Clock Condition)
’ C satisfies the clock condition if for any events p — g then C(p) < C(q). ’

For a distributes system the clock condition holds iff: For a distributes system the clock condition holds iff:
@ if p; and p; are events of P and p; — p; then C(p;) < C(p;) @ if p; and p; are events of P and p; — p; then C(p;) < C(p)
© if p is the sending of a message by process P and g is the reception of © if p is the sending of a message by process P and g is the reception of
this message by process O then C(p) < C(q) this message by process Q then C(p) < C(q)
~+ a logical clock C that satisfies the clock condition describes a fotal order ~ a logical clock C that satisfies the clock condition describes a fofal order
a < b (with C(a) < C(h)) that is compatible with the strict partial order — a < b (with C(a) < C(b)) that is compatible with the strict partial order —
e e —

The set of C that satisfy the clock condition are exactly the set of executions
possible in the system.
~~ use the process model and — to define befter consistency model

Defining C Satisfying the Clock Condition T Summary T
Given:
P_ P Py
A

‘ We can model concurrency using processes and events:
0 (11412 13 gft g4 16 17 @ there is a happened-before relation between the events of each process

R @ there is a happened-before relation between communicating events
' @ happened-before is a strict partial order

@ a clock is a total strict order that embeds the happened-before partial
R 'l A 13 e A Oﬁ

e pilp2papa
Cle)
e o @ | a3 | ai | as | a6 | @

Memory Consistency 13/46 Memory Consistency appened-Before Relatio 14/46

Moving Away from Strong Consistency T

Idea: use process diagrams to model more relaxed memory models.
T

Given a path through each of the threads of a program:
@ consider the actions of each thread as events of a process

@ use more processes 1o model memory
» here: one process per variable in memory

@ -~ concisely represent some interleavings

15/46

Memory Consistency

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its

program.

Given a result of a program with n threads on a SC system,

16 /46

Memory Consistency

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of

eqch individual processor appear I this sequence In the order specified by its

prograri., —————

16/46

Memory Consistency

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its

program.

Given a result of a program with » threads on a SC system,

@ with operations p}.pl....and pi.p?....and .. .pi p". ...
P 0- 1 0: P 0: /1

16 /46

Memory Consistency

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with n threads on a SC system,
@ with operations pl.pl....and p3.p?,...and ...pk pl, .. 7:
© there exists a total order HC.C(;%) < C(ph) foralli jk,1I...

@ where j = [implies i < k, such that this execution has the same result.

——

16 /46

Memory Consistency

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its

program.

Given a result of a program with n threads on a SC system,
@ with operations p{,pl....and p3.p},...and ...pi.pl. ...
© there exists a total order HC.C(pi) < C(py) forall i j k.1 ...

@ where j = limplies i < k, such that this execution has the same result.
Idea for showing that a system is not sequentially consistent:

@ pick a result obtained from a program run on a SC system
e o

16 /46

Memory Consistency

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with » threads on a SC system,
@ with operations pl.pl....and p3.p3,...and ...pt pt, ...
© there exists a total order 3C. C(p{) < C(p) forallij k.l ...

@ where j = /implies i < k, such that this execution has the same result.
Idea for showing that a system is not sequentially consistent:

16/46

Memory Consistency

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its

program.

Given a result of a program with » threads on a SC system,
@ with operations p},pl....and p3,p?....and .. .pipi, ...
© there exists a total order 4C . C(p{) < C(py) forallij k.1 ...
@ where j =/ implies i < k, such that this execution has the same resullt.
Idea for showing that a system is nof sequentially consistent:
@ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @

16 /46

Memory Consistency

Definition: Sequential Consistency T Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors) Definition (Sequential Consistency Condition for Multi-Processors)
The result of any execution is the same as if the operations of all the The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its each individual processor appear in this sequence in the order specified by its
program. program.
Given a result of a program with n threads on a SC system, Given a result of a program with » threads on a SC system,
@ with operations pf. pi.... and pd.pi....and ... ph.p. ... @ with operations pf. pl.... and p§.pi....and ...ph.pt, ...
© there exists a total order HC.C(;%) < C(ph) foralli jk,1I... © there exists a total order 3C. C(p{) < C(p) forallij k.l ...
@ where j = [implies i < k, such that this execution has the same result. @ where j = /implies i < k, such that this execution has the same result.
Idea for showing that a system is not sequentially consistent: Idea for showing that a system is not sequentially consistent:
@ pick a result obtained from a program run on a SC system @ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @ @ pick an execution @ and a total ordering of all operations @
@ add extra processes to model other system components @ add exira processes to model other system components

@ the original order @ becomes a partial order

Memory Consistency 16/46

Memory Consistency 16/ 46

Definition: Sequential Consistency T Weakening the Model T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its

program.

There is no observable change if calculations on different memory locations
can happen in parallel.
@ idea: model each memory location as a different process

——

Given a result of a program with n threads on a SC system,
@ with operations p{,pl....and p3.p},...and ...pi.pl. ...
© there exists a total order HC.C(pi) < C(py) forall i j k.1 ...

@ where j = limplies i < k, such that this execution has the same result.
Idea for showing that a system is not sequentially consistent:

@ pick a result obtained from a program run on a SC system

@ pick an execution @ and a total ordering of all operations @

@ add extra processes to model other system components

@ the original order @ becomes a partial order —

@ show that total orderings.C. exist for — for which the result differ

———
Memory Consistency 17 /46

Memory Consistency 16/46

Weakening the Model T Weakening the Model T

There is no observable change if calculations on different memory locations There is no observable change if calculations on different memory locations
can happen in parallel. can happen in parallel.
@ idea: model each memory location as a different process @ idea: model each memory location as a different process
foo_ _ _ _ foo_ _ foo _
a=1 f \b=1‘r A \"' b=1 r . \“ b=1 r
/ W a - ," g A I i /ﬂ -
€ mem ‘:’ - S % mem \/ i l mem y e e \/ A
A 7A A b Pyl T & T\ I T i P [
o7 b7 o7, b2 o2 b7 a2 b2 oA b2 b? -‘
bar ‘ﬂ. N J_ v/ LN bar / 1 1 / j / "1‘ bar rd iR ‘J_ v/ v

Sequential consistency still obeyed:

@ the accesses of foo to a occurs before b

Memory Consistency 17 /46 Memory Consistency 17 /46

Weakening the Model T Benefits of Sequential Consistency T

Benefits of the sequential consistency model:
@ concisely represent all interleavings that are ciu’ew's_m_s_,@d
@ synchronization using fng time is uncommon for software
@ -~ a good model for correct behaviors of concurrent programs

There is no observable change if calculations on different memory locations
can happen in parallel.

@ idea: model each memory location as a different process

@ -~ programs results besides SC results are undesirable (they contain

races)
|

Sequential consistency still obeyed:
@ the accesses of £oo to a occurs before b
@ the first two read accesses to b are in parallel to a=1

Memory Consistency 17 /46 Memory Consistency 1846

Benefits of Sequential Consistency T Benefits of Sequential Consistency T

Benefits of the sequential consistency model: Benefits of the sequential consistency model:
@ concisely represent all interleavings that are due to variations in speed @ concisely represent all interleavings that are due to variations in speed
@ synchronization using time is uncommon for software @ synchronization using time is uncommon for software
@ ~~ a good model for correct behaviors of concurrent programs @ -~ a good model for correct behaviors of concurrent programs
@ ~~ programs results besides SC results are undesirable (they contain @ -~ programs results besides SC results are undesirable (they contain
races) races)
It is a realistic model for older hardware: It is a realistic model for older hardware:
@ sequential consistency model suitable for concurrent processors that @ sequential consistency model suitable for concurrent processors that
acquire exclusive access to memory acquire exclusive access to memory
@ processors can speed up computation by using caches and still maintain @ processors can speed up computation by using caches and still maintain
sequential consistency sequential consistency

Not a realistic model for modern hardware with out-of-order execution:

@ what other processors see is determined by complex optimizations to
caching

~+ need to understand how caches work

Memory Consistency 18/46 Memory Consistency 18/46
The MESI Protocol: States QT The MESI Protocol: States QLR
Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
cosily round-trip to RAM for every memory access. = costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack) @ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires @ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy bookkeeping about who has the latest copy
Each cache line is in one of the states M. E. S, I Each cache line is in one of the states M, E, S.I:
7 il r itis invalid and is ready for re-use
M 2= F M == E o y
/ 1,
S == 1 S |1

Memory Consistency 19/46 Memory Consistency 19/46

The MESI Protocol: States i The MESI Protocol: States QL

Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access. costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack) @ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires @ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy bookkeeping about who has the latest copy
Each cache line is in one of the states M, E, S, I Each cache line is in one of the states M, E, S, I
. I: itis invalid and is ready for re-use —LL I: itis invalid and is ready for re-use
M G~ F : y o M Z2=|E ; o
S: other caches have an identical copy 5: other caches have an identical copy
of this cache line, it is shared of this cache line, it is shared
Ff]’ } }} P } E: the content is in no other cache;it_i_s
exclusive to this cache and can be
1 1, overwritten without consulting other
S |== I S == 1 caches
Memory Consistency 19/46 Memory Consistency 19/46
The MESI Protocol: States Tl The MESI Protocol: Messages L
Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a Moving data between caches is coordinated by sending messages
costly round-trip to RAM for every memory access. [McKenny (2010)]:
@ programs often access the same memory area repeatedly (e.g. stack) '
@ keeping a local mirror image of certain memory regions requires @ Aead: sentif CPU needs to read from an
bookkeeping about who has the latest copy address
Each cache line is in one of the states M. E. S, I —“—"52 E
—i I: itis invalid and is ready for re-use
M " E . ITIS I I | y !
S: other caches have an identical copy
of this cache line, it is shared
P}’]’ t E: the content is in no other cache: it is
exclusive to this cache and can be —L“: [
S L 5 overwritten without consulting other
« A [caches

M: the content is exclusive to this cache
and has furthermore been modified

e

Memory Consistency S 19/46 Memory Consistency

The MESI Protocol: Messages

Moving data between caches is coordinated by sending messages
[McKenny(2010)]:

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message, a
carries the data at the requested address M -~ E

K

Memory Consistency

The MESI Protocol: Messages

Moving data between caches is coordinated by sending messages
[McKenny(2010)]:

@ Read: sent if CPU needs to read from an
address

@ HRead Response: response to a read message, a
carries the data at the requested address M 2= F
@ /nvalidate: asks others to evict a cache line
@ [nvalidate Acknowledge: reply indicating that } }f I» l:
an address has been gvicted
L,
S == I

Memory Consistency

The MESI Protocol: Messages

Moving data between caches is coordinated by sending messages
[McKenny(2010)]:

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message, a
carries the data at the requested address M bl E

@ /nvalidate: asks others to evict a cache line P j, I l

S —— 1

Memory Consistency

The MESI Protocol: Messages

Moving data between caches is coordinated by sending messages
[McKenny(2010)]:

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message

) —_—d
carries the data at the requested address M 2= F

@ Invalidate Acknowledge: reply indicating that
an address has been evicted

@ Read Invalidate: like Read + Invalidate (also]
called “read with intend to modify”) S «k [

@ Invalidate: asks others to evict a cache line } j, I l

Memory Consistency

The MESI Protocol: Messages T

Moving data between caches is coordinated by sending messages
[McKenny(2010)]:

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message, a
carries the data at the requested address M -~ E

@ [nvalidate: asks others to evict a cache line I, J:

@ [nvalidate Acknowledge: reply indicating that Hf
an address has been evicted

@ Read Invalidate: like Read + Invalidate (also [
called “read with intend to modify”) S - I

@ Writeback: info on what data has been sent to
main memory

Memory Consistency 20/46
MESI Example (1) QLA
Thread A Thread B
a = 1; @ while (b == 0) {}; // B.1
b =1; // A.2 assert(a == 1); // B.2
state- CPUA CPUB || RAM | message
ment a b al| b alb
AA P S e O A A B | Y read invalidate of a from CPU A
oL IR IR I invalidate ack. of a from CPU B
ol R I R R R ey response of a=0 from RAM $€
1M | - -1 - 00| =~ - =
B.1 -— ,aeag_of_lg from CPU B
M- -h -1 oo read response with b=0 from RAM
By | IM| -1 lT|eE O 0 .
A2 IM - g -DEOE 010 oag invaliate of b from CPU A
IM{ -1 Q-1 oENO0O invalidate ack. of b from CPU B
M3 1|00 e response of =0 from CPU BOE
1M MA -1 - 0|0

Memory Consistency 21/46

The MESI Protocol: Messages T

Moving data between caches is coordinated by sending messages
[McKenny(2010)]:

@ Read: sent if CPU needs to read from an
address

@ Read\Response: response to a read message, a
carries,the data at the requested address M bl E

. asks others to evict a cache line I l

@ Invalidate\Acknowledge: reply indicating that H
an address, has been evicted

fe: like Read + Invalidate (also i
called “read Wjth intend to modify”) S —— I

@ Whriteback: info,on what data has been sent to
main memory

Additional store and read messages are transmitted to main memory.

Memory Consistency 20/46
MESI Example (1) QLR
Thread A Thread B
a =1; A.1l while (b == 0) {}; _E__.__
la) = alp A.2 assert(a == 1); / B.2
state- CPU A CPU(% RAM | message
ment a b a al|b
g1 | MPIME-TE-THO0T0 dofb from CPU B
MM - -1 00 write back of b=1 from CPU A
Bo | TMIAS | -1 1SHAT0Tadofafrom CPUB
M 1S -1 1S)10 write back of a=1 from CPU A
15|18 18|18 || 1|1 — =
A1 1SS S S W idate of a from CPU A
15118 '-l‘ 1S 1)1 invalidate ack. of a from CPU B
1M | 18 -l |{1s|f1 (1| — A

Memory Consistency 2246

MESI Example (1) T MESI Example: Happened Before Model T

Idea: each cache line one process, A caches b=0 as E, B cachesa=0as E

Thread A Thread B a=1 b=1
_ . A A0 * > ® P
a=1; A.l while (b == 0) {}; B.1 Sa—e o o ;
b =1; A.2 assert(a == 1); '/ B.2 F b 9 m f’)é f fe
= 52
state- | CPUA [CPUB || RAM | message 3 w8 2 x
ment | a | b |[a| b ||a|b g To 2 lyx T2
_ _ 11 - i=sl ol @ T o
A1 L O O read invalidate of a from CPU A 8 § 2 g =g
S TO O nyalidate ack. of a from CPU B T S % s
S T 0 eag response of 2=0 from RAM < T
g1 | M- Db TO RO e adof b from GPU B &
M- -l -1 oo read response with b=0 from RAM B
B.1 iM| -1 |-I|OE| OO
A2 IM - -DH OB 110 101 oy invalidate of b from CPU A Observations:
IMA - -1 OE | 010 0 idate ack. of b from CPU B @ each memory access must complete before executing next instruction
M- - - 00y response of b=0 from CPU B ~ add edge
IM|1M || -I| -1 00 e
Memory Consistency 21/46 Memory Consistency 23/46
Can MESI Messages Collide? T MESI Example: Happened Before Model T
If two processors emit a message at the same time, the protocol might break. Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E

Access to common bus is coordinated by an arbiter:

Wnteback
read -
Wnteback

Observations:

@ each memory access must complete before executing next instruction
~+ add edge

@ second execution of test b==0 stays within cache ~~ no traffic

Memory Consistency The MESI Protocol 24746

Memory Consistency

Can MESI Messages Collide? T Can MESI Messages Collide? T

If two processors emit a message at the same time, the protocol might break. If two processors emit a message at the same time, the protocol might break.
Access to common bus is coordinated by an arbiter: Access to common bus is coordinated by an arbiter:
CPUA

arbiter memory
Snape, Snape, Severus Snape

Memory Consistency 2446

Can MESI Messages Collide? AT Summary T

If two processors emit a message at the same time, the protocol might break.
Access to common bus is coordinated by an arbiter:

24/ 46

Sequential consistency: ———
@ a characterization of well-behaved programs
@ a model for different speed of execution ~————
o for fixed paths through the threads: executions can be illustrated by —

happened-before diagram with one process per variable =
@ MESI cache coherence protocol ensures SC for processors with caches
=

—

Memory Consistency 2446 Memory Consistency 25/ 46

