1044 TECHNISCHE UNIVERSITAT MUNCHEN
%%é; FAKULTAT FUR INFORMATIK m

Script generated by TTT
Programming Languages

Title: Simon: Programmiersprachen (18.01.2013)

Traits

Date: Fri Jan 18 10:05:04 CET 2013

Duration: 74:23 min

Dr. Axel Simon and Dr. Michael Petter
Pages: 31 Winter term 2012

Reusability = Inheritance? e

“Is Multiple Inheritance the holy grail of reusability ?*

t| Codesharing|in Object Oriented Systems is usually| inheritance-centric.
@ Inheritance itself comes in different flavours:

Learning outcomes -| single inheritance

@ Identify problems of composition and decomposition »[multiple inherftance |
»| mixin inheritance |

© Understand semantics of traits — ”
) o . .) @ All flavours of inheritance tackle problems of decompositionjand
© Separate function provision, object generation and class relations composition

@ Traits and existing program languages

Traits 2/30 Traits Problems with Inheritance and Composability 3/30

Streams
H e
(FileStream)| (SynchRW) [SocketStream)

read() acquireLock() read()

write() releaseLock() write()
read()
write()

\ A

Eynched FiIeStreanq (Synch edSocketStreanﬂ

% JIE)

N Duplicated Wrappers

Multiple Inheritance is not applicable as super-References are statically bound

(~ Alternative: Mixins)

Traits Problems with Inheritance and Composability

Streams modified

[FileStream) (SynchRW } (SocketStream)

tead() J LacquireLock() read()
write() releaselLock() write()

(ynched F|IeStreann (ynch edSocketStream
read() read()
write() write()

VAN Duplicated Features
read/write Code is essentially identical but duplicated

Decomposition Problems 4/30

i

Traits Problems with Inheritance and Composability

Decomposition Problems 5/30

Streams

(FileStream '} (SynchRW) (SocketStream)

tead() read()
write()

write()

acquireLock()
releaselLock()
read()
write()

A

Eynched FiIeStreaﬂ FSynchedSocketStreanq

\ J I\ J

VN Duplicated Wrappers

Multiple Inheritance is not applicable as super-References are statically bound

(~ Alternative: Mixins)

Traits Problems with Inheritance and Composability

Oh my god, streams!

acquireLock()
releaselLock()

FileStream

(SocketStream)

read()
write()

t’ead() J
write()

Gynched FiIeStreanﬂ FSynchedSocketStreanq

L N J

N Inappropriate Hierarchies

Implement methods (acquireLock/releaselock) lo high

Decomposition Problems 4/30

o

Traits Problems with Inheritance and Composability

Decomposition Problems ~ 6/30

Decomposition problems e

All the problems of

@ duplicated Wrappers

@ duplicated Features

@ inappropriate Hierarchies
are centered around the question

“How do | distribute functionality|over a|hierarchy”

~+ functional decomposition

Traits Problems with Inheritance and Composability

Decomposition Problems 7/30

Are Mixins the solution? s

<mixio uel
—
FrectToString()

— >
|n>CoIor

toString()
]

e

=
<mixin>Border

toString()

MyRectangle
toString() |

/\ Lack of Control and Dispersal of Glue Code

Overriding methods always happens in parallel wl.fack of control |
Glue code penetrates the whole hierarchy ~-|dispersal of glue code _|

Traits Problems with Inheritance and Composability

Composition Problems 9/30

Are Mixins the solution? UTF

e 1
Rectangle

toString() <mixin>Color
—c 7| toString()

Rectangle+Color

e _toString()

Rectangle+Color
+Border
toString()

MyRectangle
toString()

VAN Fragile Hierarchies

@ Linearization overrides identically named methods earlier in the chain

@ super is not enough to sufficiently qualify inherited features, while explicit
qualification makes refactoring difficult

Traits Problems with Inheritance and Composability Composition Problems 8/30

And Multiple Inheritance? e

TP
SpyCamera (MountablePlane) PrecisionGun

shoot() shoot()

equipment

(CombatPlane

| reload(Ammunition) I

b

equipm

‘ﬁameraPIane]

download():pics

PoliceDrone

VN Conflicting Features

Common base classes are shared or duplicated at class level
~ No fine-grained specification of duplication or sharing

Traits Problems with Inheritance and Composability

Composition Problems 10/ 30

The idea behind Traits LIS

@ A lot of the problems originate from the coupling of implementation and
modelling

@ Interfaces seem to be hierarchical
@ Functionality seems to be modular

ZB Central idea

Separate Object creation from modelling hierarchies and assembling
functionality.

~~ Use interfaces to design hierarchical signature propagation
~= Use fraits as modules for assembling functionality
-~ Use classes as frames for entities, which can create objects

Traits A formal model for traits 11/30
Traits e
Atraitt € T

@ is a function i : N — B*

@ has conflicts : T — 2V with con flicts(t) = {l | t(l) = T}

e provides : T — 2V with provides(t) = t=*(B)

@ selfSends: B — 2V, the set of method names used in self-sends

o requires : T — 2V with requires(t) = Ubetmf) sel fSends(b) \ provides(t)

.. and differs from Mixins
e Traits are applied to a class in parallel, Mixins incrementally
e Trait composition is unordered, avoiding linearization problems
@ Traits do not contain attributes, avoiding state conflicts
e With traits. glue code is concentrated in particular classes

Trait composition principles

Flat ordering All traits have the same precedence ~~ explicit disambiguation
Precedence Class methods take precedence over trait methods

Flattening Non-overridden trait methods have the same semantics as
class methods

Traits A formal model for traits 13/30

Classes and methods Wj&

We will construct our model from the primitive sets of
@ a countable set of method names N
@ a countable set of method bodies B
@ a countable set of attribute names A
Values of method bodies B are extended to a flaf latfice B*, with elements
@ concrete implementations
@ | undefined
@ T in conflict
and the partial order L — m C T foreachm € B

Definition (Method)
Partial function, mapping a name to a body

Definition (Method Dictionary d € D)
Total functiond : N +— B*,and d—1(T) =1

Definition (Class ¢ € C)
Either nil or|{a, d)} ¢/ witha € A,d e D,c¢' € C

Traits A formal model for traits 12/30

Trait composition e
Composing Classes from Traits:

{a,dit) - with {a, d) - ¢ a class, t a composition clause

with the overriding operator i>:

t(l)y dil)=_L
d(l) otherwise

(d>t)(1) = {

Composition clauses are based on

@ trait sum: (t1 +t2)(1) = ta (1) U ta(1)
@ exclusion: t !—{J' fa=1
exclusion: (t-a)l) = (1) otherwise
tl) ifli#a
@ aliasing: tla = b](1) = g t(b) fl=anrt(a)=_L
(

T otherwise

Traits A formal model for traits 14/30

Trait handling @] | Decomposition e

v Duplicated Features

A\ contflicts ... can easily be factored out into unique traits.
Conflicts arise if composed traits posses methods with identical signatures

\/Inappropriate Hierarchies

Conflict traitment . . . i
Trait composition as means for reusable code frees inheritance to model

v Methods can be aliased (=) hierarchical relations.
v Methods can be excluded
V' Class Methods override trait methods and sort out conflicts () v Duplicated Wrappers

Generic Wrappers can be directly modeled as traits.

Traits A formal model for traits 15 /30 Traits Traits against the identified problems Decompasition 16 /30
Composition e Simulating Traits in C++ e
template <class Super>
\/Conflicting Features class SyncRW : virtual public Super {
Traits cannot have conflicting states, and offer conflict resolving measures like pubhcf Virt;?;) SaEead O
exclusion, aliasing or overriding. acquireLockll;
int result = Super::read();
releaseLock();
v Lack of Control and Dispersal of Glue Code return result;
The composition entity can individually choose for each feature, which trait }?])]
has precedence or how composition is done. Glue code can be kept virtual void Wr?te(m'c 2
completely within the composed entity. acquireLock();
Super: :write(n);
relaseLock();
\/Fragile Hierarchies };
Conflicts can be resolved in the glue code. Navigational glue code is avoided. // ... acquireLock() & releaseLock()

Traits Traits against the identified problems Decomposition 17/30 Traits Traits in practice Traits as pattern in C++ 18/30

Simulating Traits in C++ e Simulating Traits in C++ e

template <class Super>
class LogOpenClose : virtual public Super {

publ iC : virtual VOid open(){ A What mISSBS fOI’ fu" tl‘aitS?
Super: :open() ; Compositional expressions are not available:
log("opened"); @ Aliasing

};
virtual void close(){
Super: :close(); Precedence of class methods

°
o
log("closed"); @ Specifying required methods
; °
"]

+ Fine-grained control over duplication
protected: virtual void log(char*s) { ... }; .
3 ~~ Type system not flexible enough

Exclusion

template <class Super>
class LogAndSync :

virtual public LogOpenClose<Super>, BUt doeS that matter?

virtual public SyncRW<Super>
{};

Traits Traits in practice Traits as pattern in C++ 19/30 Traits Traits in practice Traits as pattern in C++ 20/30

Traits as general composition mechanism e ‘®

A Central Idea

Separate class generation from hierarchy specification and functional “ , . o e
modelling So let’'s do a language with real traits!

@ model hierarchical relations with interfaces
@ compose functionality with traits
@ adapt functionality to interfaces and add state via glue code in classes

“Simplified multiple Inheritance without adverse
effects”

Traits Traits in practice Traits as pattern in C++ 21/30 Traits Traits in practice Real Traits in PHP 22/30

Traits in PHP I

‘trait Rectangular {
private $1=3, $w=4;

public function printInfo() { echo ’rectangular $1 x $w’; }
¥

trait Colored {

public $color = "red";

public function printInfo() { echo ’color ’. $this->color; }
¥

class ColoredRect {

use Colored, Rectangular;

public function printInfo(){
Rectangular: :printInfo();
echo ’ with ’;
Colored: :printInfo();

}

T

$0 = new ColoredRect();

$o->printInfo();

Traits Traits in practice

Real Traits in PHP 23/30

Alasing Drones as Traits in PHP e

trait MountablePlane {
abstract function store($equip);
abstract function retrieve();
public function mount ($equip){ $this->store($equip); }
public function shoot () { $this->retrieve()->fire(); }
¥
trait CameraPlane { use MountablePlane; }
trait CombatPlane { use MountablePlane; }
class PoliceDrone { use CameraPlane, CombatPlane {
CameraPlane: :mount as mountCam;
CombatPlane: :mount as mountGun;
CameraPlane: :store as storeCamera;
CombatPlane: :store as storeGun;
CameraPlane: :shoot as shootFoto;
CombatPlane: :shoot as shootTerrorist;
CameraPlane: :retrieve as retrieveCamera;
CombatPlane: :retrieve as retrieveGun;
}

private $cam, $gun;

Real Traits in PHP 25 /30

Traits Traits in practice

Aliasing Traits in PHP g

trait Rectangular {

private $1=3, $w=4;

public function printInfo() { echo ’rectangular $1 x $w’; }
}

trait Colored {

public $color = "red";

public function printInfo() { echo ’color ’. $this->color; 1}

}

class ColoredRect {
use Colored, Rectangular {
Rectangular: :printInfo as printShapeInfo;
Colored: :printInfo
}
public function printInfo(){ ... }
}

as printColorInfo;

$o = new ColoredRect();
$o->printColorInfo();

Traits Traits in practice

Real Traits in PHP 24/30

Alasing Drones as Traits in PHP I'e

A Exclusion

Unfortunaly, exclusion does not seem to work in PHP as expected, as well as
aliasing ~~ No real solution for our problem!

/N Traits in PHP
@ Composable
@ Aliasing without excluding the original
@ Exclusion virtually not present

~+ Real traits elsewhere

e.g. in Smalltalk (~ Squeak)

Real Traits in PHP 26 /30

Traits Traits in practice

Traits in Squeak WL‘E so far so... m%

Trait named: #TRStream uses: TPositionableStream
on: aCollection
self collection: aCollection.
self setToStart.
next
= self atEnd \/QOOd
ifTrue: [mnil]

@ Syntax looks really promisin
ifFalse: [self collection at: self nextPosition]. y Y P 9

Trait named: #TSynch uses: {} @ Aliasing and Exclusion is implemented
acquireLock
self semaphore wait.
releaselock A bad
self semaphore signal. @ Especially Squeak features one of the most unconventional IDEs

@ ...and there i no command line mode!

Trait named: #TSyncRStream uses] TSynch+(TRStream@[#readNext -> #next))
next

| read |

self acquireLock.
read := self readNext.
self releaseLlock.

read.

Traits Traits in practice Traits in Squeak 27/30 Traits Traits in practice Traits in Squeak 28/30

Lessons learned e Further reading... e

@ Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schérli, Roel Wuyts,
and Andrew P. Black.

Lessons Learned Traits: A mechanism for fine-grained reuse.
@ Single inheritance, multiple Inheritance and Mixins reveal n /;(%\g Transactions on Programming Languages and Systems (TOPLAS),
| real world problems | '
° ITraits offer fine-grained controllof composition of functionality ® Martin Odersky, Lex Spoon, and Bill Venners.

Programming in Scala: A Comprehensive Step-by-step Guide.
Artima Incorporation, USA, 1st edition, 2008.
ISBN 0981531601, 9780981531601.

o Native trait languages offer separation of composition of functionality from
specification of interfaces

0| Practically no language offers full traits in a usable manner

@ Nathanael Schérli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black.
Traits: Composable units of behaviour.
European Conference on Object-Oriented Programming (ECOQOP), 2003.

Traits Traits in practice Traits in Squeak 29/30

