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“What advanced techiques are there besides multiple

Mixins

implementation inheritance?”
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Abstract model for Smalltalk-Inheritance e

Smalltalk inheritance is the archetype for inheritance in mainstream
languages like Java or C#.

@ Types of Classes abstracted to maps from Identifiers to qualified methods
@ Subtypes are specified as increments A to their parents
“Let’s go back to the basics of inheritance” @ super calls are delegated to the parent
@ - Parent is connected to the increment as a parameter A(Parent)
@ Combination operator & merges operands, prefering the left argument

Smalltalk-like Inheritance is defined as ¢ = A(P) & P

Example: Doors

Door = {canPass — L, canOpen — L}

LockedDoor & ({canOpen —|Locked Door.canOpen}(Door)) & Door

Modelling Inheritance 8/35
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Excursion: Beta-Inheritance TH# Generalizing Beta- and Smalltalk-Inheritance WJ#

Beta-style inheritance is designed to provide securlty from replacement of a
method by a different method.

@ methods in parent overwrite methods in subclass
@ inner as keyword to delegate control to subclass (~ super)
@ -~ parent arranges the exact spot, where the subclass can take over

We introduce the combination operator, which joins attributes and performs
super/inner bindings:
A>B = A(B)& B

Smalltalk | C = A P
Beta \AC(N) = \M (P AX)

Example (equivalent syntax):
class Person {
String name ="Axel Simon";
public virtual String toString(){ return name+inner(); I};
};
class Graduate extends Person {
public extended String toString(){ return ", Ph.D."; };

~~ Both Systems differ only in the direction of growth (and the
lambda-expression)

¥y

Beta-like Inheritance is defined as C(inner) = P(A(inner)) & A(inner)

—_—

-~ Types in Beta are ~ Lambda-Expressions
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Excursion: CLOS-Inheritance e
CLOS(Common Lisp Object System)-style inheritance offers multiple
implementation inheritance featuring linearization.

@ methods in childs overwrite methods in parents

@ super as keyword to delegate control to direct parent (~- linearization)
Example (equivalent syntax):
class Person {

String name ="Axel Simon";

public String toString(){ return name; }

¥
class Graduate extends Person {

public String toString(){ return super.toString()+", Ph.D."; }
¥

class Doctor extends Person {
public String toString(){ return "Dr. "+super.toString(); }

¥
class ResearchingDoctor extends Doctor,Graduate {}

CLOS-like Multiple-Inheritance: C = Ay > As (... > P)...)
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“So what do we really want?”

Adventure Game with Mixins
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Adventure Game with Mixins e

class Door {
boolean canOpen(Person p) { return true; 1};
boolean canPass(Person p) { return true; 1;
¥
mixin Locked extends Door {
boolean canOpen(Person p){
if (!p.hasItem(key)) return false; else return super.canOpen(p);

¥
}
mixin Short extends Door {
boolean canPass(Person p){
if (p.height()>1) return false; else return super.canPass(p);
}
}
class ShortDoor = Short(Door);
class LockedDoor = Locked(Door);
mixin ShortLocked = Short compose Locked;
class ShortLockedDoor = Short(Locked(Door));
class ShortLockedDoor2 = ShortLocked(Door);

Introducing Mixins 16 /35

Wrapper with Mixins e
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Abstract model for Mixins WUJ@
Mixin Composition: \A.(M; + M3)(A) = \A. My (Mz(X) D A) @ (Ma2(A) B A)
Example: Doors
Door = {canPass — Door.canPass, canOpen — Door.canOpen}
Locked = {canOpen — Locked.canOpen}

Short = {canPass — Locked.canPass)

ShortLocked == Short « Locked = \A. Short(Locked(\) & A) & Locked(\)

Standard classes are handled as degenerated Mixins, binding () as composite
reference; Mixins are connected to classes via inheritance :

M(P)=M(P)&P=MbP

Example: Doors

ShortLockedDoor = (Short x Locked) > Door
= (Short(Locked(Door) & Door) & Locked(Door)) & Door

Modelling Mixins 18/35

Types of Mixins Mﬁb

Subtype Relation <

o
1
L]
| T, =125 |
(L= <7 ]
° < Reflexively and transitively closed

Example: Doors

ShortLocked < Locked | N | ShortLocked < Short

ShortLockedDoor < Short |A | ShortLockedDoor < Locked

ShortLockedDoor < ShortLocked | N| ShortLockedDoor < ShortDoor
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Implementing Mixins ey Programming Mixins 78

class Door {

boolean canOpen(Person p)...
boolean canPass(Person p)...
¥

mixin Locked extends Door {
boolean canOpen(Person p)...

canPass()
super

There are different ideas to bring mixins into daily programming:

} canOpen() [ C++ Templates & Multiple Inheritance I
mixin Short extends Door { =il C# Extension Methods
boolean canPass(Person p)... | Java Aspect Orientation|or Virtual Extension methods |

¥
class ShortDoor
= Short (Door) ;
class ShortLockedDoor
= Short (Locked(Door));

|\ Ruby/Python [ Native mixins | |

AN super-References not statically
resolvable

ShortDoor d
= new ShortLockedDoor () ;
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® Simulating Mixins in C++ e

template <class Super>
class SyncRW : public@{
public: virtual int read(O{
acquireLock();

“Surely multiple inheritance is powerful enogh to eeneetoe e

simulate mixins?” return result;
I3

virtual void write(int n){

acquireLock() ;
Super:ZEiiEEE%}E:L
relase y

// ... acquirelLock & releaselLock

Mixins Programming Mixins Simulating Mixins in C++ 23/35 Mixins Programming Mixins Simulating Mixins in C++ 2435




Simulating Mixins in C++ LD True Mixins vs. C++ Mixins '

True Mixins
@ super natively supported .
template <class Super> ' @ Mixins as Template do not i M."fms
classbiogOpenCIQSi : pl;bllc { offer composite mixins @ Mixins reduced to templated
public: virtual void open rel
| Super: :open() ; P @ C++ Type system not modular superciasses )
per::op ; = @ Can be seen as coding
Tog ("opened") ; p -~ Mixins have to stay source attern
}; code P
virtual void close(){ @ Hassle-free simplified version
Super::close(); of multiple inheritance
log("closed");
irs
protected: virtual void log(char*s) { ... }; Common properties of Mixins

¥y

[ @ Linearization is necessary |
class MyDocument : public SyncRW<LogOpenClose<Document>> {};

| @ - Exact sequence of Mixins is relevant

‘® Extension Methods (C#) %

Central Idea:
Uncouple method definitions and implementations from class bodies. I

Purpose:

“So how about method extensions?” b retrospectively add methods to complex types |
| @ especially provide implementations for interface methods |

Syntax:

@ Specify a static class with static methods
@ Explicitely specify receiver type as first first parameter with| keyword this
@ Bring the carrier class into scope (if needed) |

Call extension method In infix form |
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. .. i
public class Person{ : @ ExtenSIOH MethOdS as MIXInS W—%

public int size = 160;

Contra Extension Methods

public bool hasKey() { re

¥ ; @ Interface declarations empty,
public interface Short Pro Extension Methods thus kind of purposeless
public interface Locked '8} p transparently extend arbitrary e Inherited properties always of
public static class ns { types higher priority then extensions

i ) . 5

public StafllCKbOCE;CanUPen(thls Cked leftHand,| Person p){ @ for many cases offer enough @ Class-code is distributed over

}mtum p-hastey \) flexibility several class bodies

public static bool canPass(this Short leftHand, Person p){ @ Still no super reference

return p.size<160; /\ Limited scope of extension methods prohibits expected behaviour:
}} public interface Locked {
ublic bool canOpen(Person p){
public class ShortLockedDoor : Locked,Short { P P P
) ) . ] }
bl el vend DRl 1 public static class DoorExtensions {
ShortLockec}Doo:F d = new Shor ’ public static bool canOpen(this Locked leftHand, Person p){
}Console.erteLlne( new Person())); return p.hasKey();
}
& i}
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Excursion: Virtual Extension Methods (Java 8) g ‘®

Project Lambda from the upcoming Java version advances one pace further:
interface Door {
boolean canOpen(Person p);
boolean canPass(Person p);
¥
interface Locked extends Door {
boolean canlpen(Person p) default { return p.hasKey(); } “Ok, ok, show me a language with native mixins!”
¥
interface Short extends Door {
boolean canPass(Person p) default { return p.size<160; }
¥
public class ShortLockedDoor implements Short, Locked, Door {
}

Implementation /N Polymorphic Overwriting

...consists in adding an interface
phase to invokevirtual’s name
resolution

Still, default methods can not
overwrite abstract methods from
abstract classes
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Ruby

class Person
attr_accessor :size
def initialize
@size = 160
end
def hasKey
true
end
end
class Door
def canOpen
true
end
def canPass(person)
person.size < 210
end
end

U L=
module Short

i

&

def canPass(p)

end

p.size < 160 and super(p;

end
module Locked
def canOpen(p)
p.hasKey() and super
end
end

class ShortLockedDoor < Door
include Short
include Locked

end

p = Person.new
d = ShortLockedDoor.new
puts d.canPass(p)

Lessons Learned e

Lessons Learned

@ Formalisms to model inheritance

@ Mixins provide soft multiple inheritance

© Multiple inheritance can not compensate super reference

© (Virtual) extension methods migrate to major languages

@ Full extent of mixins only when mixins are 1st class language citizens

-

Mixins Programming Mixins
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