Script generated by TTT

Title:
Date:
Duration:

Pages:

Simon: Programmiersprachen (11.01.2013)
Fri Jan 11 10:05:08 CET 2013
87:15 min

34

“What advanced techiques are there besides multiple

Mixins

implementation inheritance?”

2/35

1044 TECHNISCHE UNIVERSITAT MUNCHEN
%%é; FAKULTAT FUR INFORMATIK m

Programming Languages

Mixins

Dr. Axel Simon and Dr. Michael Petter
Winter term 2012

Outline e

Weak implementation inheritance

© Decorator Problem
@ Wrapper Problem

Inheritance in Detail
@ Models for single inheritance
© Introducing Mixins
© Modelling Mixins

Mixins in the wild

@ Mixins as C++-Pattern
| ©@ Extension methods |
| @ Native Mixins |

Mixins Introduction 3/35

The Adventure Game

-

(ShortDoor]

canPass(Person p)

(LockedDoor |

canOpen(Person p)
2)
ﬁhortLocked Dooﬂ

canOpen(Person p)
canPass(Person p)

Introduction

The Adventure Game

The Wrapper

FileStream \

read()
write()

SocketStream)

.

7
)

N 7
(SynchRW

acquireLock()
releaselLock()

/N Cannot inherit from both seperately

VAN Creating new wrapping Classes duplicates code

Introduction

The Wrapper

4/35

i

6/35

The Adventure Game

@interface> Doorlike
canPass(Person p)
canOpen(Person p)

Door |

(ShortLocked Dooﬂ A

canOpen(Person p) /N
canPass(Person p)

Mixins Introduction

The Wrapper

Stream
write()

...... o ™~
Short
. canPass(Person p)
- ~
Locked
canOpen(Person p)

Door implements empty methods

Doorlike must anticipate wrappers

The Adventure Game 5/35

e

FileStream)

(SocketStream)

| read() I
write()

| read() |
write()

(SynchRW

]

read()
write()
acquireLock()
releaselLock()

Introduction

/N Undoes specialization
/N Needs common ancestor

The Wrapper 7135

Abstract model for Smalltalk-Inheritance e

Smalltalk inheritance is the archetype for inheritance in mainstream
languages like Java or C#.

@ Types of Classes abstracted to maps from Identifiers to qualified methods
@ Subtypes are specified as increments A to their parents
“Let’s go back to the basics of inheritance” @ super calls are delegated to the parent
@ - Parent is connected to the increment as a parameter A(Parent)
@ Combination operator & merges operands, prefering the left argument

Smalltalk-like Inheritance is defined as ¢ = A(P) & P

Example: Doors

Door = {canPass — L, canOpen — L}

LockedDoor & ({canOpen —|Locked Door.canOpen}(Door)) & Door

Modelling Inheritance 8/35

Modelling Inheritance 9/35

Excursion: Beta-Inheritance TH# Generalizing Beta- and Smalltalk-Inheritance WJ#

Beta-style inheritance is designed to provide securlty from replacement of a
method by a different method.

@ methods in parent overwrite methods in subclass
@ inner as keyword to delegate control to subclass (~ super)
@ -~ parent arranges the exact spot, where the subclass can take over

We introduce the combination operator, which joins attributes and performs
super/inner bindings:
A>B = A(B)& B

Smalltalk | C = A P
Beta \AC(N) = \M (P AX)

Example (equivalent syntax):
class Person {
String name ="Axel Simon";
public virtual String toString(){ return name+inner(); I};
};
class Graduate extends Person {
public extended String toString(){ return ", Ph.D."; };

~~ Both Systems differ only in the direction of growth (and the
lambda-expression)

¥y

Beta-like Inheritance is defined as C(inner) = P(A(inner)) & A(inner)

—_—

-~ Types in Beta are ~ Lambda-Expressions

Modelling Inheritance 10/35

Modelling Inheritance 11/35

Excursion: CLOS-Inheritance e
CLOS(Common Lisp Object System)-style inheritance offers multiple
implementation inheritance featuring linearization.

@ methods in childs overwrite methods in parents

@ super as keyword to delegate control to direct parent (~- linearization)
Example (equivalent syntax):
class Person {

String name ="Axel Simon";

public String toString(){ return name; }

¥
class Graduate extends Person {

public String toString(){ return super.toString()+", Ph.D."; }
¥

class Doctor extends Person {
public String toString(){ return "Dr. "+super.toString(); }

¥
class ResearchingDoctor extends Doctor,Graduate {}

CLOS-like Multiple-Inheritance: C = Ay > As (... > P)...)

Modelling Inheritance 12/35

(ShortDoor |

| canPass(Person p) *“‘“l

(Locked Door]

|[canOpen(Person pH\\\J

“g ’it;%}'

(ShortLocked Doo

canOpen(Person p)
canPass(Person p)

Introducing Mixins 14/35

“So what do we really want?”

Adventure Game with Mixins

-
<mixin>Locked Dooq

-

-
<mixin>ShortDoor]

canPass(Person p) l(

ﬁhortLocked Dooﬂ

canOpen(Person p) Jit- e

S PR P

Introducing Mixins

Introducing Mixins

13/35

15/35

Adventure Game with Mixins e

class Door {
boolean canOpen(Person p) { return true; 1};
boolean canPass(Person p) { return true; 1;
¥
mixin Locked extends Door {
boolean canOpen(Person p){
if (!p.hasItem(key)) return false; else return super.canOpen(p);

¥
}
mixin Short extends Door {
boolean canPass(Person p){
if (p.height()>1) return false; else return super.canPass(p);
}
}
class ShortDoor = Short(Door);
class LockedDoor = Locked(Door);
mixin ShortLocked = Short compose Locked;
class ShortLockedDoor = Short(Locked(Door));
class ShortLockedDoor2 = ShortLocked(Door);

Introducing Mixins 16 /35

Wrapper with Mixins e

FileStream

read()
write()

(SocketStrea m\

read()
write()

(<mixin>SynchRW ¢ !

acquirelock() | e .. e]
releaselLock() i i
~ i !

SynchedSocketStrearﬂ

read()
write()

gynched FileStream

read()
write()

Modelling Mixins 19/35

Abstract model for Mixins WUJ@
Mixin Composition: \A.(M; + M3)(A) = \A. My (Mz(X) D A) @ (Ma2(A) B A)
Example: Doors
Door = {canPass — Door.canPass, canOpen — Door.canOpen}
Locked = {canOpen — Locked.canOpen}

Short = {canPass — Locked.canPass)

ShortLocked == Short « Locked = \A. Short(Locked(\) & A) & Locked(\)

Standard classes are handled as degenerated Mixins, binding () as composite
reference; Mixins are connected to classes via inheritance :

M(P)=M(P)&P=MbP

Example: Doors

ShortLockedDoor = (Short x Locked) > Door
= (Short(Locked(Door) & Door) & Locked(Door)) & Door

Modelling Mixins 18/35

Types of Mixins Mﬁb

Subtype Relation <

o
1
L]
| T, =125 |
(L= <7]
° < Reflexively and transitively closed

Example: Doors

ShortLocked < Locked | N | ShortLocked < Short

ShortLockedDoor < Short |A | ShortLockedDoor < Locked

ShortLockedDoor < ShortLocked | N| ShortLockedDoor < ShortDoor

Modelling Mixins 20/35

Implementing Mixins ey Programming Mixins 78

class Door {

boolean canOpen(Person p)...
boolean canPass(Person p)...
¥

mixin Locked extends Door {
boolean canOpen(Person p)...

canPass()
super

There are different ideas to bring mixins into daily programming:

} canOpen() [C++ Templates & Multiple Inheritance I
mixin Short extends Door { =il C# Extension Methods
boolean canPass(Person p)... | Java Aspect Orientation|or Virtual Extension methods |

¥
class ShortDoor
= Short (Door) ;
class ShortLockedDoor
= Short (Locked(Door));

|\ Ruby/Python [Native mixins | |

AN super-References not statically
resolvable

ShortDoor d
= new ShortLockedDoor () ;

Modelling Mixins 21/35 Mixins Programming Mixins 22/35

® Simulating Mixins in C++ e

template <class Super>
class SyncRW : public@{
public: virtual int read(O{
acquireLock();

“Surely multiple inheritance is powerful enogh to eeneetoe e

simulate mixins?” return result;
I3

virtual void write(int n){

acquireLock() ;
Super:ZEiiEEE%}E:L
relase y

// ... acquirelLock & releaselLock

Mixins Programming Mixins Simulating Mixins in C++ 23/35 Mixins Programming Mixins Simulating Mixins in C++ 2435

Simulating Mixins in C++ LD True Mixins vs. C++ Mixins '

True Mixins
@ super natively supported .
template <class Super> ' @ Mixins as Template do not i M."fms
classbiogOpenCIQSi : pl;bllc { offer composite mixins @ Mixins reduced to templated
public: virtual void open rel
| Super: :open() ; P @ C++ Type system not modular superciasses)
per::op ; = @ Can be seen as coding
Tog ("opened") ; p -~ Mixins have to stay source attern
}; code P
virtual void close(){ @ Hassle-free simplified version
Super::close(); of multiple inheritance
log("closed");
irs
protected: virtual void log(char*s) { ... }; Common properties of Mixins

¥y

[@ Linearization is necessary |
class MyDocument : public SyncRW<LogOpenClose<Document>> {};

| @ - Exact sequence of Mixins is relevant

‘® Extension Methods (C#) %

Central Idea:
Uncouple method definitions and implementations from class bodies. I

Purpose:

“So how about method extensions?” b retrospectively add methods to complex types |
| @ especially provide implementations for interface methods |

Syntax:

@ Specify a static class with static methods
@ Explicitely specify receiver type as first first parameter with| keyword this
@ Bring the carrier class into scope (if needed) |

Call extension method In infix form |

Mixins Programming Mixins Extension Methods as Mixins 27135 Mixins Programming Mixins Extension Methods as Mixins 28/35

. .. i
public class Person{ : @ ExtenSIOH MethOdS as MIXInS W—%

public int size = 160;

Contra Extension Methods

public bool hasKey() { re

¥ ; @ Interface declarations empty,
public interface Short Pro Extension Methods thus kind of purposeless
public interface Locked '8} p transparently extend arbitrary e Inherited properties always of
public static class ns { types higher priority then extensions

i) . 5

public StafllCKbOCE;CanUPen(thls Cked leftHand,| Person p){ @ for many cases offer enough @ Class-code is distributed over

}mtum p-hastey \) flexibility several class bodies

public static bool canPass(this Short leftHand, Person p){ @ Still no super reference

return p.size<160; /\ Limited scope of extension methods prohibits expected behaviour:
}} public interface Locked {
ublic bool canOpen(Person p){
public class ShortLockedDoor : Locked,Short { P P P
)) .] }
bl el vend DRl 1 public static class DoorExtensions {
ShortLockec}Doo:F d = new Shor ’ public static bool canOpen(this Locked leftHand, Person p){
}Console.erteLlne(new Person())); return p.hasKey();
}
& i}
Mixins Programming Mixins Extension Methods as Mixins 29/35 Mixins Programming Mixins Extension Methods as Mixins 30/35

Excursion: Virtual Extension Methods (Java 8) g ‘®

Project Lambda from the upcoming Java version advances one pace further:
interface Door {
boolean canOpen(Person p);
boolean canPass(Person p);
¥
interface Locked extends Door {
boolean canlpen(Person p) default { return p.hasKey(); } “Ok, ok, show me a language with native mixins!”
¥
interface Short extends Door {
boolean canPass(Person p) default { return p.size<160; }
¥
public class ShortLockedDoor implements Short, Locked, Door {
}

Implementation /N Polymorphic Overwriting

...consists in adding an interface
phase to invokevirtual’s name
resolution

Still, default methods can not
overwrite abstract methods from
abstract classes

Mixins Programming Mixins Extension Methods as Mixins 31/35 Mixins Programming Mixins Native Mixins in Python 32/35

Ruby

class Person
attr_accessor :size
def initialize
@size = 160
end
def hasKey
true
end
end
class Door
def canOpen
true
end
def canPass(person)
person.size < 210
end
end

U L=
module Short

i

&

def canPass(p)

end

p.size < 160 and super(p;

end
module Locked
def canOpen(p)
p.hasKey() and super
end
end

class ShortLockedDoor < Door
include Short
include Locked

end

p = Person.new
d = ShortLockedDoor.new
puts d.canPass(p)

Lessons Learned e

Lessons Learned

@ Formalisms to model inheritance

@ Mixins provide soft multiple inheritance

© Multiple inheritance can not compensate super reference

© (Virtual) extension methods migrate to major languages

@ Full extent of mixins only when mixins are 1st class language citizens

-

Mixins Programming Mixins

Native Mixins in Python 33/35 Mixins

Programming Mixins

Native Mixins in Python 34/35

Further reading... m—é

@ Gilad Bracha and William Cook.
Mixin-based inheritance.
European conference on object-oriented programming on Object-oriented
programming systems, languages, and applications (OQOPSLA/ECOORP), 1990.

@ Stéphane Ducasse, Oscar Nierstrasz, Nathanael Scharli, Roel Wuyts, and
Andrew P. Black.

Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2006.

‘ Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins.
Principles of Programming Languages (POPL), 1998.

@ Brian Goetz.
Interface evolution via virtual extension methods.
JSR 335: Lambda Expressions for the Java Programming Language, 2011.

@ Anders Hejlsberg, Scott Wiltamuth, and Peter Golde.
C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
ISBN 0321154916.

