Multiple Base Classes i

Script generated by TTT

class A {
int a; int _f_(int);
};
class B {
Title: Simon: Programmiersprachen (14.12.2012) int b; int g(int); ?fﬁ
}; A inta AB
. . A, class C : public A , public B {
Date: Fri Dec 14 10:02:58 CET 2012 int c; int h(int): G B inth
I3 -
Duration: 81:31 min C intc
C c;
Pages: 13 c.E(42);
%c = alloca jclass.C
%#1 = getelementptr Jc, i64 0,@ ; select B-offset in C
%2 = call i32 @_g(%1, 132 42) T g is statically known
Multiple Inheritance Implementation of Multiple inheritance Multiple base classes in layout 12/29
Ambiguities e Virtual Tables for Multiple Inheritance e
class A { 4
int a; virtual int f(int); @ . (
s "E{)
class A { void f(int); }; class B {
class B { void f(int);[¥F; int b; virtual int f(int); —_—
class C : public A, puplic B {}; virtual int g(int); AB 1 A vptr—_} gTTI
i inta |>Keof |
C* pc; > class C : public A , public B { vptr B
pc—>£(42); 7 int c; int £(int); B int b\\ RTTI
, . }; - ~ C::Bf
/N Which method is called? o C int c B::g
C c;
Solution |: Explicit qualification Solution Il: Automagical resolution B+ pb = &c;
pc—>A::£(42); Idea: The Compiler introduces a pb—>f(42);
J-\‘E/, i
d 3 inhefitance graph %1 = getelementptr %c, i64 0, i32 1, i64 0 ;select B-offset in C
%2 = load i32 1 ;load vptr-entry
| %3 = load i32 %2 ;load f()-thunk-entry
%5 = call i32 ¥3(%1, 132 42)

Multiple Inheritance Implementation of Multiple inheritance Ambiguities 13/29 Multiple Inheritance Implementation of Multiple inheritance Virtual Table 19/29

Virtual table e B virtual table 2 [

A Virtual Table
consists of different parts:

@ the constant offset of an objects heap __|
representation to its parents heap
representation

@ a pointer to a runtime type information —
object (not relevant for us)

Remarks:
@ The virtual table is created at compile time and filled with offsets, virtual
method pointers and thunks
@ AB is the relative position of the B part in C, and known at compile time.
This entry is primarily used for dynamic casts:

C c;l

@ method pointers of the overwritten [B* b = &c; | <
methods for resolving virtual methods — "void* v = dynamic_cast<void*>(b);
printf ("%d, %d, %d"Jc[bl¥); , -2

@ Several virtual tables are joined when multiple inheritance is used

~ Casts!
@ The vptr field in each object points at the beginning of the first

virtual method pointer

Multiple Inheritance Implementation of Multiple inheritance Virtual Table 20/29 Multiple Inheritance Implementation of Multiple inheritance Virtual Table 21/29

Virtual table 3 LS ‘®

Remarks: A

@ thunks are trampoline methods, delegating the virtual method to its
original implementation with an adapted this-reference

C c; N &

B* b=&c; 13 H ”

b->£(42); /+* f(int) provided by C::f(int), But what if there ate common ancestors?
addressing its variables relative to C */

~= B-in-C-virtual table entry for £ (int) is the thunk _f (int), adding AB

to the this parameter .-g
define i32 @__f (¥this, i32 %i) {
%1 = getelementptr Jthis, i64 -1. i32 0, i32 0

%2 = tail call i32 @_f(%1, i32 %i) (X /7
ret i32 %2

C

¥

Multiple Inheritance Implementation of Multiple inheritance Virtual Table 22/29 Multiple Inheritance Implementation of Multiple inheritance Virtual Table 23/29

Distinguished base classes e Common base classes

class L { class W {
int 1; virtual void f£(int); int w; virtual void f£(int);
I3 virtual void g(int);
class A : public L { virtual void h(int);
int a; void f(int); /= i
g L thrh‘x-—-; . class A : public virtual W {
class B : public L { AB int | int a; void f(int);
int b; void f(int); A inta };
}; L vptr class B : public virtual W {
class C : public A , public B { || ™= | intl | int b; void g(int);
int c; B int b };
irg - class C : public A, public B {
— \ C int c } int c¢; void h(int);
C c; ks /\ Offsets to virtual base
L* pl = &c; &Ambiguities
ER CERECS ~+ @.g. overwriting fin A and B
C* pc = (Cx)pl; /N Ambiguity! pc—>£(42); /A Castingl
asting!
| L* pl — (A*)&C; | ((w*)PC)—>h(42); Wk = Le:
- - ((A*)pe)->£(42); RH_— Ac.
[Cxpc = (G EOp1; | ’ [o pe = (copu; |
Multiple Inheritance Implementation of Multiple inheritance Distinguished base classes 24/29 Multiple Inheritance Implementation of Multiple inheritance Common base classes 25/29
Compiler and Runtime Collaboration e Polemics of Multiple Inheritance e
Compile time:
© Compiler generates one code black for each method per class Full Multiple Inheritance (FMI) Multiple Interface Inheritance (M)
@ Compiler generates one virtual table for each class, with i)
. . . @ Most powerful inheritance @ MIl not as complex as FMI
» references to the most recent implementations of methods of a unique o
common signature prInCIple known e Ml together wit aggregation
» static offsets of top and virtual bases @ More convenient and simple in expresses most praciicai
@ Each virtual table may be composed from customized virtual tables of the common cases problems
parents (~- thunks) @ Occurance of diamond @ Killer example for FMI yet to be
©Q If needed, compiler generates thunks to adjust the this parameter of problem not as frequent as presented
methods discussions indicate @ oo frequent use of FMI
Runtime: considered as flaw in the class
hierarchy design

Ol Calls to constructors allocate memory space
°| Constructor stores pointers to virtual table (or fragments) respectively

Method calls transparently call methods statically or from virtual tables,
unaware of real class identity

@ |Dynamic casts may use top pointer

Multiple Inheritance Implementation of Multiple inheritance iler and Runti { 26/29 Multiple Inheritance 27/29

Lessons Learned e Further reading... e

> CodeSourcery, Compag, EDG, HP, IBM, Intel, Red Hat, and SGI.
[tanium C++ ABI.
URL: http://www.codesourcery.com/public/cxx-abi.

@ Roland Ducournau and Michel Habib.
Lessons Learned

On some algorithms for multiple inheritance in object-oriented programming.
@ Different purposes of inheritance In Proceedings of the European Conference on Object-Oriented Programming
@ Heap Layouts of hierarchically constructed objects in C++ (ECOOP), 1987.
@ Virtual Table layout @ Barbara Liskov.
@ LLVM IR representation of object access code Keynote address — data abstraction and hierarchy.
© Linearization as alternative to explicit disambiguation En’quz;g‘;”;éoa?;igg‘;‘;i?g%spggf?éi‘ftp‘;gigr‘:"‘; fgi?;%g?mg systems,
@ Pitfalls of Multiple Inheritance

@ Robert C. Martin.
The liskov substitution principle.
In C++ Report, 1996.

@ Bjarne Stroustrup.
Multiple inheritance for C++.
In Computing Systems, 1999.

Multiple Inheritance Discussion 28/29 Multiple Inheritance Further materials 29/29

