Script generated by TTT

Title: Simon: Programmiersprachen (07.12.2012) . , , .,
So how do we lay out objects in heap anyway?

Date: Fri Dec 07 11:28:16 CET 2012

Duration: 61:21 min

Pages: 20

Multiple Inheritance 8/26

. | Shud ¢ q
Wm."@ / R

7 ’ M(A*%‘I Bi
] é(f'«s-l— mccq,)

-.—-_-—‘—-—
Cowd

Object layout HL Object layout — virtual methods e
class A {
int a; virtual int f(int);
virtual int@(int); A%
virtual int h(int);

class A {

int a; intint);

class B : public A {

int b; int int);

+
class B : public A {
int b; int g(int);

g I3
class [§]: public B { class C : public B {
int ¢; int h(int); int c; int h(int);
I8 Irg
Cc;

.
— clvin = R

getelementptr 164 i64 ; select vptr-entry

load %C.thl‘ ; dereference vptr

h2 = getelementptr 1, ; select g()-entry

load %2 ; dereference g()-entry
%4 = call i32 D/ur:lass.B* hc, 132 42)

Multiple Inheritance Standard Object Heap Layout Virtual Methods 10/26

Multiple Inheritance Standard Object Heap Layout Object layout & inheritance 9/26

‘® Multiple Base Classes e

class A {

int a; int f£(int);
};
class B {

- _ int b; int g(int); 2,
“So how do we include several parent objects?” i A inta

class C : public A , public B { =

int c; int h(int); > B int b
};
e C intc
Cc; N—
c.g(42);

#c = alloca Y%class.C

@: getelementptri64 0 @ ; select B-offset in C
%2 = call i32 @é(%claSS.B %1, 132 %1) ; g is statically known

Multiple Inheritance Implementation of Multiple inheritance 11/26 Multiple Inheritance Implementation of Multiple inheritance Multiple base classes in layout 12726

Multiple Base Classes L") Ambiguities e

class A {

int a; int f£(int); class A { void f(int); };
¥: class B { void f(int); };
class B { class C : public A, public B {};

int b; int g(int);
g C* pc;
class C : public A , public B { pc—>£(42);

int ¢; int h(int); . .
. /\ Which method is called?
@ @3 Solution I: Explicit qualification Solution II: Automagical resolution
c.g(42); pc—rA::f(42); Idea: The Compiler introduces a

pc—>B::£(42); linear order on the nodes of the
%c = alloca Y%class.C) inheritance graph
h1 = getelementptrl\%?f g;lzlect B-offset in C
%2 = call i32 @_g(%class.B*x %1, 132 J1) ; g is statically known
VAN getelementptr hides the AB herel
Multiple Inheritance Implementation of Multiple inheritance Multiple base classes in layout 12/26 Multiple Inheritance Implementation of Multiple inheritance Ambiguities 13/26
Linearization e Linearization algorithm candidates e
Depth-First Search W
Inheritance Relation H Multiplicity M AE‘Q%C.
Defined by ancestors. Defined by the order of multiple I 14 /
“ ancestors. ASCQ _ B

Principles \ /
@ An inheritance mechanism (maps Object to sequence of ancestors) must A

follow the inheritance nartial order H

© The inheritance is a uniform mechanism, and its searches (— total order)
apply identical for all object properties (—fields/methods)

@ In any case the inheritance relation H excels the multiplicity M

@ When there is no contradiction between multiplicity M and inheritance H,
the inheritance search must follow the partial order H U M.

Multiple Inheritance Implementation of Multiple inheritance Linearization 14/26 Multiple Inheritance Implementation of Multiple inheritance Linearization 15/26

Linearization algorithm candidates e Linearization algorithm candidates S

Depth-First Search
ABWC

W Reverse Postorder Rightmost DFS
/N Principle 1 inheritance is violated |

/ \ VEescDFRA
B

\/ AgF‘DCESGH&)

Cﬁ@ wejt
Breadth-First Search |

A’&C
k/a

/\
\/

Multiple Inheritance Implementation of Multiple inheritance Linearization 15/26 Multiple Inheritance Implementation of Multiple inheritance Linearization 16/26

Reverse Postorder Rightmost DFS |

Linearization algorithm candidates LEN Linearization algorithm candidates [l

Reverse Postorder Rightmost DFS
ABFDCEGHW

Reverse Postorder Rightmost DFS
ABFDCEGHW

v’ Linear extension of inheritance relation V' Linear extension of inheritance relation

Reverse Postorder Rightmost DFS

ABCDGEF

/N But principle 4 multiplicity is violated!

FEGDCBA

Reverse Postorder Rightmost DFS |

Multiple Inheritance Implementation of Multiple inheritance Linearization 16 /26 Multiple Inheritance Implementation of Multiple inheritance Linearization 16/26

Linearization Algorithm M%

Idea [|Ducournau and Habib(1987)]

Successively perform Reverse Postorder Rightmost DFS and refine
inheritance graph G with contradiction arcs.

The reservoir set of potential coniradiction arcs CA is initially M, while the
inheritance graph G starts from H.

d

search <+ RPDFSga
@ CA + [contradiction arcs of upper search} N M
Q ¢+« GuUC4;

whil@l/\ (search violates H UM

Implementation of Multiple inheritance Linearization 17/26

Multiple Inheritance

Linearization Algorithm e

Idea [Ducournau and Habib(1987)]

Successively perform Reverse Postorder Rightmost DFS and refine
inheritance graph G with contradiction arcs.

The reservoir set of potential contradiction arcs CA is initially M, while the
inheritance graph G starts from H.
do
@ search +— RPDFS.
@ CA + {contradiction arcs of upper search} N M
Q@ c+—cucy
while (CA #) A (search violates HUM)

Implementation of Multiple inheritance Linearization 17/26

Multiple Inheritance

Linearization algorithm candidates NS

Reverse Postorder Rightmost DFS W
ABFDCEGHW

V' Linear extension of inheritance relation

Reverse Postorder Rightmost DFS

A B C DOEF)
/N But principle 4 multiplicity is violated! \ \ /

Implementation of Multiple inheritance Linearization 16/26

Multiple Inheritance

Linearization vs. explicit qualification e

Qualification
o| More flexible, fine-grained

@ Linearization choices may be
awkward or unexpected

Linearization

@ | No switch/duplexer code
necessary

@| No explicit naming of qualifiersl
of Unique super reference |

Languages with automatic linearization exist
@ CLOS Common Lisp Object System
¢ Prerequisite for — Mixins

Implementation of Multiple inheritance Linearization 18/26

Multiple Inheritance

Linearization vs. explicit qualification m@

Linearization Qualification
@ No switch/duplexer code @ More flexible, fine-grained
necessary @ Linearization choices may be
@ No explicit naming of qualifiers awkward or unexpected

@ Unique super reference

Languages with automatic linearization exist
@ CLOS Common Lisp Object System
@ Prerequisite for — Mixins

Multiple Inheritance Implementation of Multiple inheritance Linearization 18/26

