Deadlocks with Monitors B

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

Script generated by TTT

(The definition generalizes to a set of actions with a cyclic dependency.)

Title: Simon: Programmiersprachen (23.11.2012) Consider this Java class: Sequence leading to a deadlock:
class Foo { @ threads A and B execute a.bar ()
Date: Fri Nov 23 11:05:06 CET 2012 public Fop other = null; and b.bar ()
publig s onized void bar() { @ a.bar() acquires the monitor of a
Duration: 94:06 min y it (%) Other'ff_(); """ @ b.bar() acquires the monitor of b
1 @ 4 happens to execute
Pages: 113 and two instances: ovher.bar()

@ A4 blocks on the monitor of b

Foo a = new Foo();
@ I3 happens to execute

Foo b = new Foo();

a.other = b; b.other = a; other.bar ()
// in parallel: @ ~ both block indefinitely
a.bar() || b.bar(); How can this situation be avoided?

Atomic Executions, Locks and Monitors 2940

Treatment of Deadlocks L Treatment of Deadlocks I
Deadlocks occur if the following four conditions hold [1]: Deadlocks occur if the following four conditions hold [1]:

@ mutual exclusion: processes require exclusive access @ mutual exclusion: processes require exclusive access

© wait for: a process holds resources while waiting for more © wait for. a process holds resources while waiting for more

© 1o preemption: resources cannot be taken away form processes © no preemption: resources cannot be taken away form processes

@ _circular wait. waiting processes form a cycle Q@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be: The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt

Atomic Executions, Locks and Monitors 30/40 Atomic Executions, Locks and Monitors 30/40

Treatment of Deadlocks i

Deadlocks occur if the following four conditions hold [1]:

@ mutual exclusion: processes require exclusive access

© wait for: a process holds resources while waiting for more

@ no preemption: resources cannot be taken away form processes

Q circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks

are rare
@ detection: check within OS for a cycle, requires ability to preempt
@ prevention: design programs to be deadlock-free

Atomic Executions, Locks and Monitors

Treatment of Deadlocks QI

Deadlocks occur if the following four conditions hold [1]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:
@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare
@ detection: check within OS for a cycle, requires ability to preempt
@ prevention: design programs to be deadlock-free

@ avoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~~ prevention is the only safe approach on standard operating systems
@ can be achieve using lock-free algorithms
@ but what about algorithms that require locking?

Atomic Executions, Locks and Monitors

Treatment of Deadlocks B

Deadlocks occur if the following four conditions hold [1]:

@ mutual exclusion: processes require exclusive access

© waif for. a process holds resources while waiting for more

© no preemption: resources cannot be taken away form processes
Q circular wait: waiting processes form a cycle

The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt

© prevention: design programs to be deadlock-free

© avoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

30/40

Atomic Executions, Locks and Monitors

Deadlock Prevention through Partial Order [/L[]]
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of focks that may be in the “acquired™State at program point p.

31/40

Atomic Executions, Locks and Monitors

Deadlock Prevention through Partial Order [||/]|]]

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let I denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure #* of a relation o:

Definition (transitive closure)
Lets C X x X be arelation. Its transitive closure is 0" = | J,,; @' where

.éLl] = g X'?‘f‘>§ X/)-{)Q. XL {*‘5
gt = @J {{zy,23) | Iz € X . (31, 73) € 0" A{m2,73) € '}

Atomic Executions, Locks and Monitors 31/40

Deadlock Prevention through Partial Order [L[|]|

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure #* of a relation o:

Definition (transitive closure)
Lets C X x X be arelation. Its transitive closure is 6" = J,,, o' where

a = a

ot = g'u {z1,23) | Fwe € X . (31, 22) € ol A (w0, 73) € (f'}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« C L x L suchthat! « I’ iff | € A(p) and the statement at p is of the
form wait(1’) ormonitor enter (1’). Define the strict lock order <t

Atomic Executions, Locks and Monitors 31/40

Deadlock Prevention through Partial Order /|||

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let I denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure ¢ of a relation o
Definition (transitive closure)

Leto C X x X be arelation. Its transitive closure is o = |, -, o’ where

a - O

ot = ' U{{x,23) | Tx2 € X . {m1,T2) € d' A (T2, 13) €0’}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define < € L x L suchthat! < ["iff | € \(p) and the statement at p is of the
form wait(1’) of monitor_enter (1’). Define the strict lock order <= «*.

Atomic Executions, Locks and Monitors 0 (ecutions 31/40

Freedom of Deadlock T

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists noa € L witha < a then the program is free of deadlocks. ’
S—— — —_

Atomic Executions, Locks and Monitors 0 tecutio 32/40

Freedom of Deadlock i Freedom of Deadlock B

The following holds for a program with mutexes and monitors: The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock) ’ Theorem (freedom of deadlock) ’

If there exists hoa € L witha < a then the program is free of deadlocks. If there exists noa € L Witha < a then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) at L and on monitors Suppose a program blocks on semaphores (mutexes) at Ls and on monitors
at Ly suchthat L = Lg U Lyy. at Ly suchthat L = Ls U Lyy.
o e —

Theorem (freedom of deadlock for monitors)

If Ao € Ls.a < aand Aa € Ly, b€ L.a#bAa=<bAb=a thenthe program
is free of deadlocks. = — T

Theorem (freedom of deadlock for monitors)

If ABa € Ls.a<aand Aa € Lyr,b € L.a#bAa=<bAb= athen the program
is free of deadlocks.

Lr Ll Note: the set L contains instances of a lock.
@ the set of lock instances can vary at runtime
4__'-——_-‘-—-———-_______
@ if we statically want to ensure that deadlocks cannot occur:

» summarize every monitor that may have sev instances into one
a summary lock a € L,; represents several concrete ones
thus, if « < a then this might not be a self-cycle
~ require that a # a for all summarized monitors @ € L,
——

y¥vy

Atomic Executions, Locks and Monitors 32/40 Atomic Executions, Locks and Monitors 32/40
Avoiding Deadlocks in Practice T Avoiding Deadlocks in Practice T
How can we modify a program so that locks can be ordered? How can we modify a program so that locks can be ordered?

@ identify mutex locks Lg and summarized monitor locks L5, C Ly, @ identify mutex locks Ly and summarized monitor locks L, € Ly,

@ identify non-summary monitor locks L7, = Ly \ LY,
@ sort locks into ascending order according to lock sets
@ modify code that locks are only acquired in strictly ascending order

—

Atomic Executions, Locks and Monitors 33/40 Atomic Executions, Locks and Monitors 33/40

Avoiding Deadlocks in Practice T Avoiding Deadlocks in Practice T

How can we modify a program so that locks can be ordered? How can we modify a program so that locks can be ordered?
@ identify mutex locks Lg and summarized monitor locks L5, C Ly, @ identify mutex locks Ly and summarized monitor locks L, € Ly,
@ identify non-summary monitor locks L}, = Ly, \ L}, @ identify non-summary monitor locks L}, = Ly \ L,
@ sort locks into ascending order according to lock sets @ sort locks into ascending order according to lock sets
j ; stric scend @ modify code that locks are only acquired in strictly ascending order
A Ordering might be hard or impossible to find: A Ordering might be hard or impossible to find:
@ determining which locks may be acquired at each program point is @ determining which locks may be acquired at each program point is
undecidable ~~ approximate lock set undecidable ~~ approximate lock set
° anéarray of locks: lock in increasing array index sequence @ an array of locks: lock in increasing array index sequence
@ if IA(P) exists where I’ < [should be Iocked release! acquwe ', then @ if [A(P?) exists where I' < [should be locked: release [, acquire I, then
acquwe ! again ~ inefficient acquire [again ~- inefficient
e ifa Iock set contains a summatrized Iock a and a is to be acquired, we're o if a lock set contains a summarized lock a and a is to be acquired, we're
stuck stuck
an example for the latter is the Foo class: two instances of the same class call
each other
Atomic Executions, Locks and Monitors 33/40 Atomic Executions, Locks and Monitors 0 (ecutions 33/40
Refining the Queue: Concurrent Access T Example: Deadlock freedom T
Add a second lock s->t to allow concurrent removal: Is the example deadlock free? Consider its skeleton:
double-ended queue: removal , double-ended queue: removal
int PopRight (DQueue* g, int val) { | ? ' void PopRight () {
QNode* oldRightNode; . S (* 5oc
wait(q->t); // wait to enter the critical section 7 wait(gq->t);
(ONode* rightSentinel = g->right; .
oldRightNode = rightSentinel->left; if () { signal(gq->t); return; }
if (oldRightNode==leftSentinel) { signal(q->t); return -1; } noc
QNodex* neleghtNode = oldRightNode->left; ._ A if (c) wait(q->s);
if (newRightllodé==leftSentinel) walt(q >8); ~ 7Cf e
newRightNode->right = rightSentinel; a-»@%szJQ,p(if (c) signal(g->s);
rightSentingel->left = newRightNode; signal(q->t);
if (newRightliodfe=leftSentinel) _signal(g->s); i
signal(g->t); // signal that we’re done
int val = oldRightNode->val;
free(oldRightNode) ;
return val;
1

Atomic Executions, Locks and Monitors 34/40 Atomic Executions, Locks and Monitors 0 cecutio 35/40

Example: Deadlock freedom T

Is the example deadlock free? Consider its skeleton:

double-ended queue: removal
void PopRight() {

wait(gq->t);
——
if (*) { signal(q->t); return; }

A;J: ié.(c) wait(q—zi);

) if (c) signal(g->s);
signal (gq->t);

}
@ in PushLeft, the lock set for s is empty 1~
@ here, the lock set of s is {1}
@ { < 5 and transitive closure is ¢ <5

mtmtrt—— ——
@ ~- the program cannot deadlock

Atomic Executions, Locks and Monitors 35/40

Outlook T

Writing atomic annotations around sequences of statements is a convenient
way of programming.

Atomic Executions, Locks and Monitors 37 /40

Atomic Execution and Locks B

Consider replacing the specific locks with atomic annotations:

double-ended queue: removal
void PopRight() {

it(gt); e €

ié.(*) { signal(g->t); return; }
p if (c) wait(q=>s);

1f (¢) signallg->s);
$ signal(g->t);
}

———

@ nested atomic blocks still describe one atomic execution
-umi—
@ - locks convey additional information over atomic
@ |ocks cannot easily be recovered from atomic declarations
——

Atomic Executions, Locks and Monitors ocked Atom cecutions 36 /40

Outlook T

Writing atomic annotations around sequences of statements is a convenient
way of programming.

Idea: Replace atomic sections with locks:
@ a single lock could be use to protect all atomic blocks
@ more concurrency is possible by using several locks
» compare the PushLeft, PopRight example

@ some statements might modify variables that are never read by other
threads ~~+ no lock required

@ statements in one atomic block might access variables in a different oder
to another atomic block ~ deadlock prevention when creating locks

@ creating too many lock can decrease the performance, especially when

required to release locks in A(/) when acquiring {

Atomic Executions, Locks and Monitors ocked Atom e cutio 37 /40

References i

¥ E. G. Coffman, M. Elphick, and A. Shoshani.
System deadlocks.
ACM Comput. Surv., 3(2):67-78, June 1971.

¥ Tim Harris, James Larus, and Ravi Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.

Atomic Executions, Locks and Monitors 40/40

Abstraction and Concurrency i

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLefZ If Not.
oLt

Concurrency: Transactions 2/26

R
Abstraction and Concurrency QI

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the_sgtthread-safe.

Concurrency: Transactions 2/26

Abstraction and Concurrency T Abstraction and Concurrency T

Two fundamental concepts to build larger software are: Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals functionality may be used without reference to its internals
composition : several objects can be combined to a new object without composition : several objects can be combined to a new object without
interference interference
Both, abstraction and composition are closely related, since the ability to Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details. compose hinges on the ability to abstract from details.
Consider an example: Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the @ alinked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of @ a set object may internally use the list object and expose a set of
operations, including PushLeft operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not. already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe. Wrapping the linked list in a mutex does not help to make the set thread-safe.
@ ~- wrap the two calls in Insert in a mutex @ - wrap the two calls in Insert in a mutex
@ but other list operations can still be called ~~ use the same mutex @ but other list operations can still be called -~ use the same mutex

~+ Unlike sequential algorithms, thread-safe algorithms cannot always be

composed to give new thread-safe algorithms

Concurrency: Transactions 2/26 Concurrency: Transactions 2/26

Transactional Memory [2] T Transactional Memory [2] T
Idea: automatically convert atomic blocks into code that ensures atomic Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements. execution of the statements.
atomic { atomic {
// code l // code
if (gggd) retry; if (cond) retry;
atomic { atomic {
// more code // more code
+ }
// code // code
} }
Execute code as transaction: Execute code as transaction:

@ execute the code of an atomic block
@ check that it runs without confficts due to accesses from another thread

Concurrency: Transactions 3/26 Concurrency: Transactions 3/26

Transactional Memory [2] T Transactional Memory [2] T

Idea: automatically convert atomic blocks into code that ensures atomic Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements. execution of the statements.
| atomic {& & atomic {
// code // code
if (cond) retry; if (cond) retry;
atomic {e= atomic {
> 4 // more code // more code
} }
// code // code
} }
Execute code as transaction: Execute code as fransaction:
@ execute the code of an atomic block @ execute the code of an atomic block
@ check that it runs without conflicts due to accesses from another thread @ check that it runs without conflicts due to accesses from another thread
o if another thread interferes through conflicting updates: @ if another thread interferes through conflicting updates:
» undo the computation done so far » undo the computation done so far
» re-start the transaction » re-start the transaction

@ provide a retry keyword similar to the wait of monitors
Sm—

Concurrency: Transactions 3/26 Concurrency: Transactions 3/26

Transactional Memory [2] Tt Managing Conflicts T

Idea: automatically convert atomic blocks into code that ensures atomic

execution of the statements. Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is

atomic { Dot detected when the TM system observes this, it is resolved when the TM
! Eodo) system takes action‘TBy delaying or aborting a transaction).
if (cond) retry;
atomic { Design choices for transactional memory implementations:
// more code éz__.w‘—’-"u ’ yim
}
// code
}

Execute code as transaction:
@ execute the code of an atomic block
@ check that it runs without conflicts due to accesses from another thread

@ if another thread interferes through conflicting updates:

» undo the computation done so far
» re-start the transaction

@ provide a retry keyword similar to the wait of monitors

Concurrency: Transactions 3/26 Concurrency: Transactions 4/26

Managing Conflicts T Managing Conflicts T

Definition (Conflicts) Definition (Conflicts)
A conflict occurs when accessing the same piece of data, a conflict is A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction). system takes action (by delaying or aborting a transaction).
Design choices for transactional memory implementations: Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control: @ optimistic vs. pessimistic concurrency control.

» pressimistic: conflict occurrence, detection, resolution occur at once

——————

4/26

‘Concurrency: Transactions 4/26 Concurrency: Transactions

Managing Conflicts T Managing Conflicts T
Definition (Conflicts) Definition (Conflicts)
A conflict occurs when accessing the same piece of data, a conflict is A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction). system takes action (by delaying or aborting a transaction).
Design choices for transactional memory implementations: Design choices for transactional memory implementations:

@ oplimistic vs. pessimistic concurrency control: @ optimistic vs. pessimistic concurrency control:

» pressimistic: conflict occurrence, detection, resolution occur at once
* resolution here is usually delaying one fransaction
* can be implemented using locks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs

» pressimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using locks: deadlock problem

4/26

4/26 Concurrency: Transactions

Concurrency: Transactions

Managing Conflicts T Managing Conflicts T

Definition (Conflicts) Definition (Conflicts)
A conflict occurs when accessing the same piece of data, a conflict is A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction). system takes action (by delaying or aborting a transaction).
Design choices for transactional memory implementations: Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control: @ optimistic vs. pessimistic concurrency control.

» pressimistic: conflict occurrence, detection, resolution occur at once
* resolution here is usually delaying one transaction
* can be implemented using locks: deadlock problem

d resolution can happen after a conflict occurs » optimistic: detection and resolution can happen after a conflict occurs

* resolution here must be aboriing one transaction
* need to repeated aborted transaction: livelock problem

» pressimistic. conflict occurrence, detection, resolution occur at once
* resolution here is usually delaying one transaction
* can be implemented using locks: deadlock problem
» optimistic:
= resolution here must be aborting one transaction
ekl

4/26

‘Concurrency: Transactions 4/26 Concurrency: Transactions

Managing Conflicts T Managing Conflicts T
Definition (Conflicts) Definition (Conflicts)
A conflict occurs when accessing the same piece of data, a conflict is A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction). system takes action (by delaying or aborting a transaction).
Design choices for transactional memory implementations: Design choices for transactional memory implementations:

@ oplimistic vs. pessimistic concurrency control: @ optimistic vs. pessimistic concurrency control:

» pressimistic: conflict occurrence, detection, resolution occur at once
* resolution here is usually delaying one fransaction
* can be implemented using locks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs

* resolution here must be aborting one transaction
* need to repeated aborted transaction: livelock problem

» pressimistic: conflict occurrence, detection, resolution occur at once
* resolution here is usually delaying one transaction
* can be implemented using locks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs
* resolution here must be aborting one transaction
* need to repeated aborted transaction: livelock problem

@ eager vs. lazy version management. how read and written data are @ eager vs. lazy version management: how read and written data are

managed during the transaction managed during the transaction
» eager: writes modify the memory and an undo-log is necessary if the
e ——=1

transaction aborts

4/26 Concurrency: Transactions 4/26

Concurrency: Transactions

Managing Conflicts T Choices for Optimistic Concurrency Control [/!I]]]

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is

detected when the TM system observes this, it is resolved when the TM Design choices for TM that allow conflicts to happen:

system takes action (by delaying or aborting a transaction). @ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

Design choices for transactional memory implementations:
@ optimistic vs. pessimistic concurrency control:
» pressimistic. conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using locks: deadlock problem

» optimistic: on-and resdlution can happen after a conflict occurs
= resolution here must be aborting one transaction
* need to repeated aborted transaction: livelock problem
@ eager vs. lazy version management. how read and written data are
managed during the transaction
» eager. writes modify the memory and an undo-log is necessary if the

transaction aborts
» lazy: writes are stored in a redo-log and modifications are done on

committing
Choices for Optimistic Concurrency Control L[] Choices for Optimistic Concurrency Control |/ I]]]
Design choices for TM that allow conflicts to happen: Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

conflicts possible

© conflict detection: Q@ confiict detection:
» eager. conflicts are detected when memory locations are first accessed

» Vvalidation: check occasionally that there is no conflict yet, always validate
when commitfing
commith

» eager. conflicts are detected when memory locations are first accessed

5/26

5/26 Concurrency: Transactions

Concurrency: Transactions

Choices for Optimistic Concurrency Control] Choices for Optimistic Concurrency Control [/!I]]]

Design choices for TM that allow conflicts to happen: Design choices for TM that allow conflicts to happen:
@ granularity of conflict detection: may be a cache-line or an object, false @ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible conflicts possible

© conflict detection: Q confiict detection:
» eager: conflicts are detected when memory locations are first accessed » eager: conflicts are detected when memory locations are first accessed
» validation: check occasionally that there is no conflict yet, always validate » validation: check occasionally that there is no conflict yet, always validate

when committing when committing

» lazy: conflicts are detected when committing a transaction » lazy: conflicts are detected when committing a transaction

© reference of conflict (for non-eager conflict detection)

Concurrency: Transactions 5/26 Concurrency: Transactions 5/26

Choices for Optimistic Concurrency Control L[] Choices for Optimistic Concurrency Control |/ I]]]
Design choices for TM that allow conflicts to happen: Design choices for TM that allow conflicts to happen:
@ granularity of conflict detection: may be a cache-line or an object, false @ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible conflicts possible
© conflict detection: Q@ confiict detection:
» eager. conflicts are detected when memory locations are first accessed » eager. conflicts are detected when memory locations are first accessed
» validation: check occasionally that there is no conflict yet, always validate » validation: check occasionally that there is no conflict yet, always validate
when committing when committing
» lazy: conflicts are detected when committing a transaction » lazy: conflicts are detected when committing a transaction
@ reference of conflict (for non-eager conflict detection) © reference of conflict (for non-eager conflict detection)
» tentative detect conflicts before transactions commit, e.g. aborting when » tentative detect conflicts before transactions commit, e.g. aborting when
transaction TA reads while TB may writes the same location transaction TA reads while TB may writes the same location

» committed detect conflicts only against transactions that have committed
et L

Concurrency: Transactions 5/26 Concurrency: Transactions 5/26

Semantics of Transactions slewc Lol T Semantics of Transactions QL

The goal is to use transactions to specify atomic executions. The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties: Transactions are rooted in databases where they have the ACID properties:

atomicity : a transaction completes or seems not to have run

Concurrency: Transactions 6/26 Concurrency: Transactions 6/26

Semantics of Transactions QT Semantics of Transactions QLR
The goal is to use transactions to specify atomic executions. The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties: Transactions are rooted in databases where they have the ACID properties:
atomicity . a transaction completes or seems not to have run atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic @ we call this failure atomicity to distinguish it from atomic
executions executions

consistency : each transaction transforms a consistent state to another

———

consistent state

Concurrency: Transactions 6/26 Concurrency: Transactions 6/26

Semantics of Transactions
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
afomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency . each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold

Concurrency: Transactions

i

6/26

Semantics of Transactions

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity . a transaction completes or seems not to have run

@ we call this failure atomicity to distinguish it from atomic
executions

consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory
durability : the effects are permanent v
Transactions themselves must be serializable:

Concurrency: Transactions

nm

6/26

Semantics of Transactions
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency . each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory

durability : the effects are permanent v

Concurrency: Transactions

]

6/26

Semantics of Transactions

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run

@ we call this failure atomicity to distinguish it from atomic
executions

consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory
durability : the effects are permanent v
Transactions themselves must be serializable:

o the result of running current transactions must be identical to one
execution of them in sequence

Concurrency: Transactions

L

6/26

Semantics of Transactions Tl
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
afomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency . each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory
durability : the effects are permanent v
Transactions themselves must be serializable:

@ the result of running current transactions must be identical to one
execution of them in sequence

@ serializability for transactions is insufficient to perform synchronization
between threads

Concurrency: Transactions 6/26

Consistency During Transactions T

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction
@ this is usually ok since it will be aborted eventually
@ but transactions may cause havoc when run on inconsistent states
atomic { < Z v =a // preserved invariant: x==y
int tmpl = x; atomic { —
int tmp2 = y; x = 10;
assert (tmpl-tmp2==0) ; y = 10;
——

b

Concurrency: Transactions 7126

Consistency During Transactions T

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

Aovroreyt

Concurrency: Transactions 7126

Consistency During Transactions T

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert (tmpl-tmp2==0) ; y = 10;

} b
@ critical for C/C++ if, for instance, variables are pointers
#

Definition (opacity)
A TM system provides opacilty if failing transactions are serializable w.r.t.
committing transactions.

~ failing transactions still sees a consistent view of memory

Concurrency: Transactions 7126

Weak- and Strong Isolation T Weak- and Strong Isolation T

If guarantees are only given about memory accessed inside atomic, a TM If guarantees are only given about memory accessed inside atomic, a TM

implementation provides weak isolation. implementation provides weak isolation.

Can we mix transactions with code accessing memory non-transactionally? Can we mix transactions with code accessing memory non-transactionally?
R @ no conflict detection for non-transactional accesses

8/26

‘Concurrency: Transactions 126 Concurrency: Transactions
Weak- and Strong Isolation T Weak- and Strong Isolation T
If guarantees are only given about memory accessed inside atomic, a TM If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation. implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally? Can we mix transactions with code accessing memory non-transactionally?
@ no conflict detection for non-transactional accesses @ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses @ standard race problems as in unlocked shared accesses
// Thread 1 X =0 // Thread 1
atomic { // Thread 2 atomic { // Thread 2
x = 42; int tmp = x; x = 42; int tmp = x;
} }

@ -~ give programs with races the same semantics as if using a single

global lock for all atemic blocks
e ————

8/26

8/26 Concurrency: Transactions

Concurrency: Transactions

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses

@ standard race problems as in unlocked shared accesses
// Thread 1
atomic {

x = 42;

// Thread 2

int tmp = x;
}

@ -~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Concurrency: Transactions

i

Weak- and Strong Isolation T

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?
@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses
// Thread 1
atomic {
x = 42;
}
@ ~~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ sfrong isolation: retain order between accesses to TM and non-TM

// Thread 2
int tmp = x;

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a singel, program-wide mutual exclusion lock.

8/26 8/26

Concurrency: Transactions

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.

Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses

@ standard race problems as in unlocked shared accesses
// Thread 1
atomic {

x = 42;

}

@ ~- give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

// Thread 2
int tmp = x;

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a singel, program-wide mutual exclusion lock.

nm

Properties of Single-Lock Atomicity

T~ e, =

t

Observation:

~ like sequential consistency, SLA is a statement about program equivalence
e e e,

Concurrency: Transactions

8/26 9/26

Concurrency: Transactions

Properties of Single-Lock Atomicity T Propetrties of Single-Lock Atomicity T

E&tomic { k= i+j; }

atomic { k = i+j; }

A = A . ' '

i - d

) - J

]f- 1 9 9 k

P — P e, - 1 _\
b &omic { k = i+3; T =177 B
Observation: Observation:
@ SLA enforces order between TM and non-TM accesses v~ @ SLA enforces order between TM and non-TM accesses v~

» this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v

Concurrency: Transactions 9/26

Concurrency: Transactions 9/26

Propetrties of Single-Lock Atomicity T Propetrties of Single-Lock Atomicity T
o4

a"comic { k= i+j; }

A. 4"1 g ;
J J e
k k o
e LN
B B omic { kK = i+5; T =1z ®
Observation: Observation:
@ SLA enforces order between TM and non-TM accesses v~ @ SLA enforces order between TM and non-TM accesses v~
» this guarantees strong isolation between TM and non-TM accesses » this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v @ within one transactions, accesses may be re-ordered v
@ the content of non-TM memory conveys information which atomic block @ the content of hon-TM memory conveys information which atomic block
has executed, even if the TM regions do not access the same memory has executed, even if the TM regions do not access the same memory

» SLA makes it possible to use atomic block for synchronization

Concurrency: Transactions 9/26 Concurrency: Transactions 9/26

Disadvantages of the SLA model T Disadvantages of the SLA model T

The SLA model is simple but often too strong: The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have @ SLA has a weaker progress guarantee than a transaction should have
// Thread 1 // Thread 2 // Thread 1 // Thread 2
atomic { atomic { atomic { atomic {
while (true) {}F% int tmp = x; // x in TH while (true) {}; int tmp = x; // x in TU
} = } —— } }
© SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1: & int tmp = data;
_EEEEIE_T’ // Thread 1 not in atomic
V } if (ready) {
ready = 1; // use tmp
—_ }
}
‘Concurrency: Transactions 10/26 Concurrency: Transactions 10/26

Disadvantages of the SLA model Tl Transactional Sequential Consistency T

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2 @ ~~ the programmer cannot rely on synchronization
atomic { atomic {
while (true) {}; int tmp = x; // x in TN Definitio =7
¥ . . .} TSC The transactional sequential consistency is a model in which the
© SLA correctness is too strong in pract}c/e accesses WIthin each transaction are sequentially consistent.
Thread 2
// Thread 1 atomic {
data = 1 int tmp = data;
atomic {’ // Thread 1 not in atomic
) if (ready) {
// use tm
ready = 1; 3 P

1
» under the SLA model, atomic {} acts as barrier
» intuitively, the two transactions should be independent rather than
synchronize

Concurrency: Transactions 10/26 Concurrency: Transactions 11/26

Transactional Sequential Consistency T Transactional Sequential Consistency T

How about a more permissive view of transaction semantics? How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks @ TM should not have the blocking behaviour of locks
@ ~- the programmer cannot rely on synchronization @ -~ the programmer cannot rely on synchronization
Definition Definition
TSC The fransactional sequential consistency is a model in which the TSC The transactional sequential consistency is a model in which the
accesses within each transaction are sequentially consistent. accesses within each transaction are sequentially consistent.
atomic_{ k = i+j; } atomic { k = i+j; }
7 d , i ? .- ‘."-‘ .-‘;:
k S k %
B B
@ TSC is weaker: gives srrong isolation, but allows parallel execution v @ TSC is weaker: gives strong isolation, but allows parallel execution v
@ TSC is stronger: accesses within a transaction may not be re-ordered AN @ TSC is stronger: accesses within a transaction may not be re-ordered VAN

~ actual implementations use_LSC with some race free re-orderings

Concurrency: Transactions 11/26 Concurrency: Transactions 11726

Quick Quiz QI Translation of atomic-Blocks QLR

A TM system must track which shared memory locations are accessed:

Associate one item on the left with one or two on the right. @ convert every read access x from a shared variable t0 ReadTx (&x)

o

redo and undo

conflict detection
concurrency control
isolation
version management

@ a transaction waits rather than creating
a conflict
@ in case of a conflict, a kind of log is
needed
© a zombie transaction sees an
inconsistent state)
@ no guarantee if a fransaction accesses ® eager, lazy
26AB Crar> ay T and we | @ optimistic,
@ a write in a transaction is immediately pessimistic
globally visible @ strong, weak

Concurrency: Transactions 12/26 Concurrency: Transactions ation of Software 13/26

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable to ReadTx (&x)
@ convert every write access x=e to a shared variable to WriteTx (&x,e)

Convert atomic blocks as follows:

) do {
atomic {
- /7 __d — StartTx () ;
} cone h // code with ReadTx and WriteTx
} while (!CommitTx());

Concurrency: Transactions

i

13/26

Transactional Memory for the Queue
If a preprocessor is used, PopRight can be implemented as follows:

double-ended queue: removal

int PopRight (DQueue* q, int val) {

(QNode* oldRightNode;

atomic {
(QNode* rightSentinel = g->right;
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) retry;
(QNode* newRightNode = oldRightNode->left
newRightNode->right = rightSentinel;
rightSentingel->left = newRightNode;

s
int val = oldRightNode->val;
free(oldRightNode) ;

return val;

+

nm

@ the transaction will abort if other threads call PopRight

Concurrency: Transactions

14/26

]

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable {0 ReadTx (&x)
@ convert every write access x=e to a shared variable to WriteTx (&x,e)

Convert atomic blocks as follows:

. do {
atomic {
7/ cod — StartTx();
} coge N // code with ReadTx and WriteTx
} while (!CommitTx()); -
a—"-—-_

@ franslation can be done using a pre-processor
» determining a minimal set of memory accesses that need to be transactional
requires a good static analysis
» Idea: translate all accesses to global variables and the heap as TM
» more fine-grained control using manual translation
@ an actual implementation might provide a retry keyword
» when executing retry, the transaction aborts and re-staris
» the transaction will again wind Up at retry unless its read sef changes
» - block until a variable in the read-s_e't-ﬁgs changed

» similar to condition variables in monjtors v

13/26

Concurrency: Transactions

L

Transactional Memory for the Queue
If a preprocessor is used, PopRight can be implemented as follows:

double-ended queue: removal

int PopRight (DQueue* q, int val) A
(QNode* oldRightNode;
atomic {
(QNode* rightSentinel = g->right;
oldRightNode = rightSentinel->left;
if (oldRightlNode==leftSentinel) retry;
QNode* newRightNode = oldRightNode->left;
¢ newRightNode->right = rightSentinel;
5 ﬂ' rightSentingel->left = newRightlNode;

int val = oldRightNode->val;
free(oldRightNode) ;
return val;

T

@ the transaction will abort if other threads call PopRight
o if the queue is empty, it may abort if PushLeft is executed (lines 8,9)

Concurrency: Transactions plementation o

14 /26

A Software TM Implementation

i

A software TM implementation allocates a fransaction descriptor to store data

specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails

@ redo-log of writes if writes are postponed until a commit

@ read- and write-set: locations accessed so far

@ read- and write-version: time stamp when value was accessed
Consider the TM2 STM (software transactional memory) algorithm [1]:

—_—

Concurrency: Transactions

15/26

Principles of TL2

The idea: obtain a version tx.RV from the global clock when starting the

nm

. -'_ . .
transaction, the read-version, and set the versions of all written cells to a new

version on commit.
A read from a field at of fset of object obj is implemented as follows:

—

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objloffset]) in tx.redoLog) {
return tx.redoLog[&obj[offset]];
} else {
atomic { vl1 = obj.timestamp; locked = obj.sem<1; };
result = objloffset];
‘22 = obj.timestamp;
if (locked || vi != v2 || vl > tx.RV) AbortTx(tx);
T
tx.readSet = tx.readSet.add(obj);
return result; -

+

Concurrency: Transactions

16/26

A Software TM Implementation T

A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and write-sel: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TM2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses lazy versioning: writes are stored in a redo-log and done on commit
@ eager conflict detection: a transaction aborts as soon as it conflicts
TL2 stores a global version counter and:

@ aread version in each object (allocate a few bytes more in each call to
malloc, or inherit from a transaction objectin e.g. Java)

@ aredo-log in the transaction descriptor
@ aread- and a write-set in the transaction descriptor
@ aread-version: the version when the transaction started

Concurrency: Transactions plementation of Software 15/26

Principles of TL2 T

The idea: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.

A read from a field at of fset of object obj is implemented as follows:

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objloffset]) in tx.redoLog) {
return tx.redoLog[&objloffset]];
} else {
atomic { vl = obj.timestamp; locked = obj.sem<l; };
result = objloffset];
v2 = obj.timestamp;
if (locked || vi1 '= v2 || vl > tx.RV) AbortTx(tx);
1
tx.readSet = tx.readSet.add(obj);
return result;

+

WriteTx is simpler: add or update the location in the redo-log.

Concurrency: Transactions plementation of Software 16/26

Committing a Transaction T Propetrties of TL2 T

A transaction can succeed if none of the read locations has changed: Opacity is guaranteed by aborting a read access with an inconsistent value:

committingatransaction StartTx ReadTx VWriteTx ReadTx CommitTx

- - -
bool CommitTx(TMDesc tx) { write redo-log
foreach (e in tx.writeSet) validate read set
if (ltry_wait(e.obj.sem)) goto Fail; increment global clock
WV = FetchAndAdd(&globalClock) ;
——— Sttt s
foreach gg_in tx.readSet)
if (e.obj.version > tx.RV) goto Fail;
foreach (e in tx.redolog)
e.obj[e.offset = e.value;
foreach (e in tx.writeSet) {
e.obj = WV; signal(e.obj.sem);
e —

,,i memory state seems to be consistent

Other observations:

1

return true;

. -_—
Fail:

// signal all acquired semaphores
e —
return false;

+

Concurrency: Transactions 17/26 Concurrency: Transactions 18/26

Properties of TL2 T Hardware Transactional Memory T

Opacity is guaranteed by aborting a read access with an inconsistent value:

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets

StartTx ReadTx WriteTx ReadTx CommitTx

@ @ &
T I | write redo-log

memory state seems to be consistent incremgﬁlt%&llé%;?glcégf t

Other observations:

@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)

Concurrency: Transactions 18/26 Concurrency: Transactions plementation of Software 20/26

Hardware Transactional Memory T Hardware Transactional Memory T

Transactions of a limited size can also be implemented in hardware: Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets @ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache: @ conflict detection is eager using the cache:
» if a cache-line in the write set is evicted, a transaction becomes invalid » if a cache-line in the write set is evicted, a transaction becomes invalid

» if a cache-line in the read set is invalidated, a transaction becomes invalid
~ due to limited size, a STM backup must be provided

Concurrency: Transactions 20/26 Concurrency: Transactions

20/26

Hardware Transactional Memory T Hardware Transactional Memory T
Transactions of a limited size can also be implemented in hardware: Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets @ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache: @ conflict detection is eager using the cache:
» if a cache-line in the write set is evicted, a transaction becomes invalid » if a cache-line in the write set is evicted, a transaction becomes invalid
» if a cache-line in the read set is invalidated, a transaction becomes invalid » if a cache-line in the read set is invalidated, a transaction becomes invalid
~ due to limited size, a STM backup must be provided ~= due to limited size, a STM backup must be provided
Two principal implementation of HTM: Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional @ Explicit Transactional HTM: each access is marked as transactional

» similar to StartTx, ReadTx, WriteTx, and CommitTx
» track an extra bit with each cache-line that is set if the transaction became
invalid, return this bit after each access

@ Implicit Transactional HTM: only the beginning and end of a transaction
are marked

Concurrency: Transactions 20/26 Concurrency: Transactions

20/26

Hardware Transactional Memory T Hardware Transactional Memory T

Transactions of a limited size can also be implemented in hardware: Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets @ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache: @ conflict detection is eager using the cache:
» if a cache-line in the write set is evicted, a transaction becomes invalid » if a cache-line in the write set is evicted, a transaction becomes invalid
» if a cache-line in the read set is invalidated, a transaction becomes invalid » if a cache-line in the read set is invalidated, a transaction becomes invalid
~ due to limited size, a STM backup must be provided ~ due to limited size, a STM backup must be provided
Two principal implementation of HTM: Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional @ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx » similar to StartTx, ReadTx, WriteTx, and CommitTx
» track an extra bit with each cache-line that is set if the transaction became » track an extra bit with each cache-line that is set if the transaction became
invalid, return this bit after each access invalid, return this bit after each access
@ Implicit Transactional HTM: enly the beginning and end of a transaction @ Implicit Transactional HTM: only the beginning and end of a transaction
are marked are marked
» provide a target to jump to when transaction aborts » provide a target to jump to when transaction aborts

» track a read- and write-set per core and check these against invalidations
» performing any instruction affecting the CPU aborts a transaction (examples:
OS calls, interrupts, 10)

‘Concurrency: Transactions 20/26 Concurrency: Transactions 20/26
Example for HTM: Intel T Example for HTM: Intel T
Intel's Haswell microarchitecture (March - June 2013): implicit transactional Intel's Haswell microarchitecture (March - June 2013): implicit transactional
@ Hardware Lock Elision @ Hardware Lock Elision

» provides a way to execute a critical section without the atomic updates
necessary to acquire and release the lock

21/26

21/26 Concurrency: Transactions

Concurrency: Transactions

Example for HTM: Intel T Example for HTM: Intel T

Intel's Haswell microarchitecture (March - June 2013): implicit transactional Intel's Haswell microarchitecture (March - June 2013): implicit fransactional
@ Hardware Lock Elision @ Hardware Lock Elision
» provides a way to execute a critical section without the atomic updates » provides a way to execute a critical section without the atomic updates
necessary to acquire and release the lock necessary to acquire and release the lock
» requires annotations » requires annotations

* instruction setting the semaphore to 0 must be prefixed with XACQUIRE
* instruction that increments the semaphore must be prefixed with XRELEASE
* these prefixes are ignored on older platforms
after XACQUIRE instr, all accesses are stored in read-/write-sets
the value v that instr is updating to «' is only read, not written
any accessed cache line is tracked in the read-/write-sets
if any other processor invalidates any of these cache lines, the transaction
aborts
» when XRELEASE instr’ is seen, tracking of read-/write-sets stops
» if XRELEASE instr’ writes a value different to v, the transaction aborts
(~ nested locks)
» aborting a transaction requires:
* a shadow copy of the processor state at XACQUIRE
—

¥y yvy

Concurrency: Transactions 21/26 Concurrency: Transactions 21/26

Example for HTM: Intel T Restricted Transactional Memory T

Intel's Haswell microarchitecture (March - June 2013): implicit transactional
@ Hardware Lock Elision

» provides a way to execute a critical section without the atomic updates @ Hardware Lock Elision

necessary to acquire and release the lock .
» requires annotations

* instruction setting the semaphore to 0 must be prefixed with XACQUIRE e Restricted Transactional Memory

* instruction that increments the semaphore must be prefixed with XRELEASE » provides new instructions XBEGIN, XEND, XABQRT, and XTEST
* these prefixes are ignored on older platforms » XBEGIN takes an instruction address where execution continues if the
after XACQUIRE instr, all accesses are stored in read-/write-sets transaction aborts

XABORT aborts the current transaction with an error code

XTEST checks if the processor is executing transactionally

internal operations similar to lock elision

aborts on every use of OS calls, 10, accesses to non-MESI addresses, etc.
programmer must provide alternative code path

in contrast to lock elision, there is no progress guarantee

~» semantics needs to be re-implemented with locks or STM

the value v that instr is updating to ' is only read, not written
any accessed cache line is tracked in the read-/write-sets
if any other processor invalidates any of these cache lines, the transaction
aborts
» when XRELEASE instr’ is seen, tracking of read-/write-sets stops
» if XRELEASE instr’ writes a value different to ¢, the transaction aborts
(~ nested locks)
» aborting a transaction requires:

* a shadow copy of the processor state at XACQUIRE
* an invalidation of all cache lines in the read-/write sets
* are-execution of the code with normal lock semantics

yvyvy

»
»>
»
»>
»>
»
»

Concurrency: Transactions 21/26 Concurrency: Transactions ation of Software 2226

Integrating Non-TM Resources T Integrating Non-TM Resources T

Allowing access to other resources than memory inside an atomic block Allowing access to other resources than memory inside an atomic block
poses problems: poses problems:

@ storage management, condition variables, volatile variables, @ storage management, condition variables, volatile variables,
input/output input/output

@ semantics should be as if atomic implements SLA or TSC semantics @ semantics should be as if atomic implements SLA or TSC semantics

Usual choice is one of the following: Usual choice is one of the following:

@ Prohibit It. Certain constructs do not make sense. Use compiler to reject @ Prohibit It. Certain constructs do not make sense. Use compiler to reject
these programs. these programs.

@ Execute It. Library routines may be executable as transactions. @ Execute It. Library routines may be executable as transactions.

@ Irrevocably Execute It. Universal way to deal with operations that cannot @ Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: ensure that this transaction is able to terminate before be undone: ensure that this transaction is able to terminate before
starting /t by making all other transactions conflict. starting /t by making all other transactions conflict.

@ [ntegrate It. Re-write code to be transactional: error logging, writing data @ Integrate It. Re-write code to be transactional: error logging, writing data
to afile, to afile,

~ currently best to use TM only for memory; check if TM supports irrevocable
transactions

Concurrency: Transactions 23/26 Concurrency: Transactions 23/26

Transactional Memory: Summary T Transactional Memory: Summary T
Transactional memory aims to provide atomic blocks for general code: Transactional memory aims to provide atomic blocks for general code:

@ frees the user from deciding how to lock data structures @ frees the user from deciding how to lock data structures

@ compositional way of communicating concurrently @ compositional way of communicating concurrently

@ can be implemented using software (locks, atomic updates) or hardware @ can be implemented using software (locks, atomic updates) or hardware

The devil lies in the details:

@ semantics of explicit HTM and STM transactions quite subtle when
mixing with non-TM (weak vs. strong isolation)

@ single-lock atomicity and fransactional sequential consistency semantics
—

@ STM not the right tool to synchronize threads

@ STM providing opacity require eager conflict detection

Concurrency: Transactions 24/26 Concurrency: Transactions ation of Software 2426

Outlook T

Several other principles exist for concurrent programming:

@ non-blocking message passing (the actor model)
» a program consists of actors that send messages
» each actor has a queue of incoming messages
» messages can be processed and new messages can be sent
» special filtering of incoming messages
» example: Erlang, many add-ons to existing languages
@ blocking message passing (CSP, =-calculus, join-calculus)
» a process sends a message over a channel and blocks until the recipient
accepts it
» channels can be send over channels (w-calculus)
» examples: Occam, OEE_aﬂ'_n-rr, @'
© (immediate) priority ceiling
» declare processes with priority and resources that each process may acquire
» each resource has the maximum (ceiling) priority of all processes that may
acquire it
» a process’ priority at run-time increases to the maximum of the priorities of
held resources
» the process with the maximum (run-time) priority executes

Concurrency: Transactions Implementation of Software TM 25/26

References B

@ D. Dice, O. Shalev, and N. Shavit.
Transactional Locking II.

In Distributed Coputing, LNCS, pages 194—208. Springer, Sept. 20086.

W T Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.

Concurrency: Transactions Implementation of Software TM

26/26

