Sequential Consistency T

Note: there is no observable change if calculations on different memory

Script generated by TTT locations can happen in parallel.
@ model each memory location as different process

foo
At 0 ?
Title: Simon: Programmiersprachen (16.11.2012) " a=1 Y ob=t
Date: Fri Nov 16 11:05:30 CET 2012 © RV NS,
m .) ‘_ A 1
Duration: 85:18 min @ 4- r i r Py
bt b2t b2t e
Pages: 105 bar ¢ W/ N/ N

Some observations:
@ the accesses of foo to a occurs before b
o the first two read accesses to b are in parallel to a=1

Memory Consistency 11736
Definition: Sequential Consistency T Definition: Sequential Consistency T
Definition (Sequential Consistency Condition for Multi-Processors) Definition (Sequential Consistency Condition for Multi-Processors)
The result of any execution is the same as if the operations of all the The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its each individual processor appear in this sequence in the order specified by its
program. program.
Uh? Uh? The result of an n-threaded program does not change

Memory Consistency 12136

Memory Consistency 12/36

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change

@ all operations Vp, p!l. .. and/pf.pr.f .. and . .}pg,p’{, »

Memory Consistency 12/36

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program. =

Uh? The result of an n-threaded program does not change
© all operations ¥p}, pl....and p3.p}....and ...pa. pi.. ..
- -
@ are executed in a total order HC.C(% < C(ﬁz,’) foralli,j. k.1

@ wherej=1limpliesi <k

“E—

Memory Consistency 12/36

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear In this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change

@ all operations ¥pl, pl.... and p2.p%,...andptpt, ...
0 1 0:H1 01

——

. e . e
@ are executed in a total order 3C. C(pl) < C(pl) for all i, j k.1 -
T ——

Memory Consistency 12/36

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change
@ all operations ¥pl, pl,... and p3,p3....and .. .pi.pi.. ..
© are executed in a total order HC.C(pﬁ) < C(p}) foralli,j. k1

@ where j = /implies i < k
Idea for showing that a system is nof sequentially consistent:

Memory Consistency 12136

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change
© all operations Vp}, pt....and p3.p?,...and ... pi. ph, ...
© are executed in a total order HC.C(,nf) < C(ph) for all i,j k.1
@ wherej = limpliesi < k
Idea for showing that a system is not sequentially consistent:
@ assuming program executes correctly under sequential consistency

Memory Consistency 12/36

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change

@ all operations ¥pl.pl,...and p?,p?,...and .. . pi.pt. ...
P 0: Pl 0: 1 0: P

@ are executed in a total order 3C. C(p}) < C(p}) for all i, j, k.1

@ wherej=1limpliesi <k
Idea for showing that a system is not sequentially consistent:
@ assuming program executes correctly under sequential consistency
@ pick an execution @ and a total ordering of all operations @
@ add extra processes for a more realistic model

Memory Consistency 12/36

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change
© all operations ¥pl. pl,...and p3,p3,...and ... pk, pt, ...

© are executed in a total order HC.C(pﬁ) < C(ph) for all i, j, k,1

@ where j = /implies i < k

Idea for showing that a system is not sequentially consistent:
@ assuming program executes correctly under sequential consistency
@ pick an execution @ and a total ordering of all operations @

Memory Consistency 12/36

Definition: Sequential Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change
@ all operations ¥pl, pl,... and p3,p3....and .. .pi.pi.. ..

© are executed in a total order 3C. C(pﬁ) < C(p}) foralli,j. k1

@ where j = /implies i < k
Idea for showing that a system is nof sequentially consistent:
@ assuming program executes correctly under sequential consistency
@ pick an execution @ and a total ordering of all operations @
@ add extra processes for a more realistic model
@ the original order @ becomes a partial order —

Memory Consistency 12136

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)
The result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its

program.

\m’ mesi.pdf - Adobe Reader

Definition: Sequential.Consistency T

Definition (Sequential Consistency Condition for Multi-Processors)
The result of any execution is the same as if the operations of all the

Uh? The result of an n-threaded program does not change
© all operations Vp}, pt....and p3.p?,...and ... pi. ph, ...

@ are executed in a total order HC.C(;){) < C(ph) for all i,j k.1
©Q where j = {implies i < k
Idea for showing that a system is not sequentially consistent:

@ assuming program executes correctly under sequential consistency
@ pick an execution @ and a total ordering of all operations @
@ add extra processes for a more realistic model
@ the original order @ becomes a partial order —
@ show that total orderings €’ exist for — for which the result differ

processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Uh? The result of an n-threaded program does not change
@ all operations ¥p).pl....and pZ.p3....and ...pi.p". ...
@ are executed in a total ordeer.C(pf:J < C(ph) for all i, j, k1
@ where j — limpliesi < k
Idea for showing that a system is not sequentially consistent:
@ assuming program executes correctly under sequential consistency
@ pick an execution @ and a total ordering of all operations @
@ add extra processes for a more realistic model
@ the original order @ becomes a partial order —
@ show that total orderings C’ exist for — for which the result differ

12/ 36

Memory Consistency 12/36
Limitations of Wait- and Lock-Free Algorithms [/ Limitations of Wait- and Lock-Free Algorithms /L[]
Wait-/Lock-Free algorithms are severely limited in terms of their computation: Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operations @ restricted to the semantics of a single atomic operations
@ set of atomic operations is architecture specific, but often includes @ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register » exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell » compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory » fetch-and-add on integers in memory
» modify-and-test on bits in memory » modify-and-test on bits in memory
@ provided instructions usually allow only one memory operand
Atomic Executions, Locks and Monitors 11/40 Atomic Executions, Locks and Monitors 11/40

Limitations of Wait- and Lock-Free Algorithms ||]|]|

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operations

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~ only very simple algorithms can be implemented, for instance
binary semaphores : a flag that can be acquired (set) if free (unset) and

yvy

released

Atomic Executions, Locks and Monitors 11/40

Limitations of Wait- and Lock-Free Algorithms [/

Wait-/Lock-Free algorithms are severely limited in terms of their computation:

@ restricted to the semantics of a single atomic operations
@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

yvy

@ provided instructions usually allow only one memory operand
~ only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore
R ———

Atomic Executions, Locks and Monitors 11/40

Limitations of Wait- and Lock-Free Algorithms /|||

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operations

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~+ only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

¥y vy

counting semaphores : an integer that can be decreased if hon-zero and
increased

Atomic Executions, Locks and Monitors Synchronizatio 11/40

Limitations of Wait- and Lock-Free Algorithms /L[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:

@ restricted to the semantics of a single atomic operations

@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register

compare-and-swap of a register with a memory cell

fetch-and-add on integers in memory

modify-and-test on bits in memory

yvyyvy

@ provided instructions usually allow only one memory operand
~ only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore

monitor : ensures mutual exclusion using a binary semaphore, allows
other threads to block until the next release of the resource

Atomic Executions, Locks and Monitors Synchronizatio 11/40

Limitations of Wait- and Lock-Free Algorithms [[[]| Semaphores and Mutexes T

Wait-/Lock-Free algorithms are severely limited in terms of their computation: A (counting) semaphore is an integer s with the following operations:
@ restricted to the semantics of a single atomic operations void wait () {
@ set of atomic operations is architecture specific, but often includes 20041; avail;
» exchange of a memory cell with a register id s 10 { ° tomic {
» compare-and-swap of a register with a memory cell ver _S;gg_a; _ . aton C _)
» fetch-and-add on integers in memory atomic { 8 =8 + 1; } avail = s>0;
» modify-and-test on bits in memory b . if (avail) s--;
@ provided -|nstruct|onst usually allowlr only one memory operand } while (lavail):
~ only very simple algorithms can be implemented, for instance 3
binary semaphores : a flag that can be acquired (set) if free (unset) and A counting semaphore can track how many resources are still available.
released -
counting semaphores : an integer that can be decreased if non-zero and
increased
mutex : ensures mutual exclusion using a binary semaphore
monitor : ensures mutual exclusion using a binary semaphore, allows
other threads to block until the next release of the resource
We will collectively refer to these data structures as locks.
Atomic Executions, Locks and Monitors 11/40 Atomic Executions, Locks and Monitors 12/40
Semaphores and Mutexes T Semaphores and Mutexes T
A (counting) semaphore is an integer s with the following operations: A (counting) semaphore is an integer s with the following operations:
void wait () { void wait () {
bool avail; bool avail;
do { do {
void signal() A atomic { void signal() { atomic {
atomic { s = s + 1; } avail = s>0; atomic { s = s + 1; } avail = s>0;
} if (avail) s--; } if (avail) s--;
} }
} while (lavail); } while (lavail);
} }
A counting semaphore can track how many resources are still available. A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait () @ a thread requiring a resource executes wait ()
o if a resource is still available, wait () returns @ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal() @ once a thread finishes using a resource, it calls signal ()

@ (choosing which available resource to use requires more synchr.)

Atomic Executions, Locks and Monitors 12/40 Atomic Executions, Locks and Monitors 12740

Semaphores and Mutexes

A (counting) semaphore is an integer = with the following operations:

void wait () {
bool avail;
do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} if (avail) s--;
}
} while (lavail);

I

A counting semaphore can track how many resources are still available.

@ athread requiring a resource executes wait ()

@ if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal()

@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:

Atomic Executions, Locks and Monitors

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait () {
bool avail;
do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} if (avail) s—-;
}
} while (lavail);
}
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal ()
@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:
@ can be used to block and unblock a thread

12740 Atomic Executions, Locks and Monitors 0 (ecutions 12/40

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait () {
bool avail;
do {
atomic {
avail = s>0;

void signal() A
atomic { s = s + 1; }
} if (avail) s--;
}
} while (lavail);
}

A counting semaphore can track how many resources are still available.

@ athread requiring a resource executes wait ()

o if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal()

@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:

@ can be used to block and unblock a thread

@ can be used to protect a single resource

Atomic Executions, Locks and Monitors

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait () {
bool avail;
do {
atomic {
avail = s>0;

void signal() {
atomic { s = s + 1; }
} if (avail) s--;
}
} while (lavail);
}
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal ()
@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:
@ can be used to block and unblock a thread
@ can be used to protect a single resource
» in this case the data structure is also called mutex

12/40 Atomic Executions, Locks and Monitors 0 tecutio 12/40

Implementation of Semaphores

A semaphore does not have to busy wait:

void wait() {
boeol avail;
do {
atomic {
avail = s>0;
if (avail) s--;
b
if ('avail) de_schedule(&s);
} while (lavail);
1

Busy waiting is avoided by placing waiting threads into queue:

void signal() A
atomic { s = s + 1; }

I

Atomic Executions, Locks and Monitors

13/40

Implementation of Semaphores

A semaphore does not have to busy wait:

void wait() {
bool avail;
do {

tomi
void signal() { atomic {

atomic { s = s + 1; }

}

avail = s>0;
if (avail) s--;
}
if (lavail) de_schedule(&s);
} while (lavail);
}

Busy waiting is avoided by placing waiting threads into queue:

Atomic Executions, Locks and Monitors

13 /40

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait () {
ol
bool avail;

do { ==
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
-_— —
} if (avail) s—-;
}
} while (lavail);
+

A counting semaphore can track how many resources are still available.

@ athread requiring a resource executes wait ()

@ if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal ()

@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:

@ can be used to block and unblock a thread

@ can be used to protect a single resource

» in this case the data structure is also called mutex

Atomic Executions, Locks and Monitors

]

12/40

Implementation of Semaphores

A semaphore does not have to busy wait:

void wait() {
bool avail;
do {

toms
void signal() { atomic {

atomic { s = s + 1; }

b

avail = s>0;
if (avail) s--;
}
if ('avail) de_schedule é;b;
} while (lavail); —

}

Busy waiting is avoided by placing waiting threads into queue:
@ athread failing to decrease s executes de_schedule()

Atomic Executions, Locks and Monitors

13 /40

Implementation of Semaphores T Implementation of Semaphores T

A semaphore does not have to busy wait: A semaphore does not have to busy wait:
void wait() { void wait() {
boeol avail; bool avail;

do { do {
atomic { atomic {

void signal() {
atomic { s = s + 1; }

void signal() A

. avail = s>0;
atomic { s = s + 1; } ’

if (avail) s--;

avail = s>0;
if (avail) s--;

’ } ’ }
if ('avail) de_schedule(&s); if ('avail) de_schedule(&s);
} while (lavail); } while (lavail);
} }
Busy waiting is avoided by placing waiting threads into queue: Busy waiting is avoided by placing waiting threads into queue:
@ athread failing to decrease s executes de schedule() @ a thread failing to decrease s executes de schedule()
@ de_schedule() enters the operating system and adds the waiting thread @ de_schedule() enters the operating system and adds the waiting thread
into a queue of threads waiting for a write to memory address &s into a queue of threads waiting for a write to memory address &s

@ once athread calls signal (), the first thread ¢ waiting on &s is extracted
—_— _ e

Atomic Executions, Locks and Monitors 13/40 Atomic Executions, Locks and Monitors 13/40

Implementation of Semaphores T Practical Implementation of Semaphores T
A semaphore does not have to busy wait: Certain optimisations are possible:
void wait() { void wait() {
boel avail; bocldgzgiliff,qé——
{ do {#atomic {
. . atomic { void signal() { avail = s>0;
v01i s?gnil()_{ i avail = s50; atomic { s = s + 1; } if (avail) s--;
avomie S F ’ if (avail) s--; b }
} 1 if (lavail) de_schedule(&s);
if ('avail) de_schedule(&s); } while ('avail);
} while (lavail); }
} In general, the implementation is more complicated

@ wait () may busy wait for a few iterations
Wal for alew freratio

Busy waiting is avoided by placing waiting threads into queue:
@ athread failing to decrease s executes de_schedule ()

@ de schedule() enters the operating system and adds the waiting thread
into a queue of threads waiting for a write to memory address &s

@ once a thread calls signal (), the first thread ¢ waiting on &s is extracted
@ the operating system lets ¢ return from its call to de_schedule()

Atomic Executions, Locks and Monitors 13/40 Atomic Executions, Locks and Monitors 14740

Practical Implementation of Semaphores

Certain optimisations are possible:

void wait() {
boeol avail;
do { atomic {
avail = s>0;
if (avail) s--;

void signal() A
atomic { s = s + 1; }
} +
if ('avail) de_schedule(&s);
} while (lavail);
}

In general, the implementation is more complicated

@ wait () may busy wait for a few iterations
» saves de-scheduling if the lock is released frequently

Atomic Executions, Locks and Monitors

i

Practical Implementation of Semaphores

Certain optimisations are possible:

void wait() {
bool avail;
do { atomic {
avail = s>0;
if (avail) s--;

void signal() {
atomic { s = s + 1; }
} }
if ('avail) de_schedule(&s);
} while (lavail);
}
In general, the implementation is more complicated
@ wait () may busy wait for a few iterations

» saves de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time

14/40

Atomic Executions, Locks and Monitors

14/40

Practical Implementation of Semaphores
Certain optimisations are possible:

void wait() {
boel avail;
do { atomic {
avail = s>0;
if (avail)

void signal() {
atomic { s = s + 1; }
} - ¥
if (lavail) de_schedule(&s);
} while (lavail);

s=-;

}

In general, the implementation is more complicated
@ wait () may busy wait for a few iterations

» saves de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time

@ signal() might have to inform the OS that s has been written
e S —

Atomic Executions, Locks and Monitors

nm

L

Practical Implementation of Semaphores
Certain optimisations are possible:

void wait() {
bool avail;

do {“remic 1

avail = s>0;
if (avail)

void signal() {
atomic { s = s + 1; } f
} 1
if (lavail) de_schedule(&s);
} while (lavail);

s=-;

b

In general, the implementation is more complicated
@ wait () may busy wait for a few iterations

» saves de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time

@ signal() might have to inform the OS that s has been written
~+ using a semaphore with a single thread reduces to if (s) S——;Vs++;
@ using semaphores in sequential code has no or little penalty

 program with concurrency in mind?

14/ 40

Atomic Executions, Locks and Monitors

14/ 40

Making a Queue Thread-Safe T Mutexes R

Consider a double ended queue: J One common use of semaphores is to guarantee mutual exclusion.
ﬁ”f'{— enlileeEnd) uETE @ in this case, a binary semaphore is also called a mutex
eRA ¥ right
seme'.__ \ 10 20 90 sgntinel
[

double-ended queue: adding an element

void PushLeft(DQueue* q, int val) {

(Node *qn = malloc(gzzeof(QNode));

an->val = val;

// prepend node gn

(ONode* leftSentinel = g->left;

QNode* oldLeftNode = leftSentinel->right;
e

gn->left = leftSentinel;

gn->right = oldLeftlNode;

leftSentinel->right = qgn;

oldLeftNode -> left = qn;

1
Atomic Executions, Locks and Monitors 15/40 Atomic Executions, Locks and Monitors ocked Ato (ecutions 16/40
Mutexes L Mutexes I
One common use of semaphores is to guarantee mutual exclusion. One common use of semaphores is to guarantee mutual exclusion.
@ in this case, a binary semaphore is also called a mutex @ in this case, a binary semaphore is also called a mutex
@ add a lock to the double-ended queue data structure @ add a lock to the double-ended queue data structure

@ decide what needs protection and what not

double-ended queue: thread-safe version

void PushLeft (DQueue* int val) {
QNode *qn = malloc(sizeof (QNode));
gn->val = val;
wait(q->s); // wait to enter the critical section
QNode* leftSentinel = g->left;
QNode* oldLeftNode = leftSentinel->right;
gn->left = leftSentinel;
gn->right = oldLeftNode;
leftSentinel->right = gn;
oldLeftNode -> left = qn;
signal(g->s); // signal that we’re done

I

Atomic Executions, Locks and Monitors 16/40 Atomic Executions, Locks and Monitors ocked Atom cecutio 16/40

Implementing the Removal T Implementing the Removal T

By using the same lock q->s, we can write a thread-safe F? By using the same lock q->s, we can write a thread-safe PopRight:

double-ended queue: removal : double-ended queue: removal
int PopRight (DQueue* g, int val) { WRI IOK, __;> int PopRight (DQueue* q, int val) {
QNode* oldRightlode; QNode* oldRightNode;
wait(q->s); // wait to enter the c11t1cal section wait(q->s); // wait to enter the critical section
QNode* rightSentinel = g->right; QNode* rightSentinel = q->right;
oldRightNode = rightSentinel-> : oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) { signal(q->s); return -1; } if (oldRightNode==leftSentinel) { signal (q->s); return -1; }
(ONode* newRightNode = oldRightNode->left; QNode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel; newRightNode->right = rightSentinel;
rightSentingel->left = newRightNode; rightSentingel->left = newRightNode;
signal(g->s); // signal that we’re done gignal(q->s); // signal that we’re domne
int val = oldRightNode->val; int val = oldRightNode->val;
free(oldRightlNode) ; free(oldRightNode) ;
return val; return val;
1 }
@ error case complicates code ~~ semaphores are easy to get wrong
@ abstract common concept: t’a_tﬁalo.ck_an.en.try, release-on-exit
Atomic Executions, Locks and Monitors 17 /40 Atomic Executions, Locks and Monitors 0 17 /40
Monitors: An Automatic, Re-entrant Mutex i Monitors: An Automatic, Re-entrant Mutex AT
Often, a data structure can be made thread-safe by Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure @ acquiring a lock upon entering a function of the data structure
-
@ releasing the lock upon exit from this function @ releasing the lock upon exit from this function
s Mt
Locking each procedure body that accesses a data structure: Locking each procedure body that accesses a data structure:

@ is a re-occurring pattern, should be generalized
©@ becomes problematic in recursive calls: it blocks

Atomic Executions, Locks and Monitors 18/40 Atomic Executions, Locks and Monitors 0 cecutio 18740

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks
@ if a thread / waits for a data structure to be filled:

Atomic Executions, Locks and Monitors

18/40

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
©@ becomes problematic in recursive calls: it blocks

© if a thread + waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» ¢ then has to call again, until an element is available

> &t is busy waiting and produces contention on the lock

Atomic Executions, Locks and Monitors

18 /40

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1
» ¢ then has to call again, until an element is available

Atomic Executions, Locks and Monitors

18/40

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
©@ becomes problematic in recursive calls: it blocks

Q@ if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» ¢ then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

Atomic Executions, Locks and Monitors

18/40

Monitors: An Automatic, Re-entrant Mutex i

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» ¢ then has to call again, until an element is available

> &f is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:
@ a procedure associated with a monitor acquires a lock on entry and
e

releases it on exit
_feleases Ton e

Atomic Executions, Locks and Monitors 18/40

Monitors: An Automatic, Re-entrant Mutex i

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
©@ becomes problematic in recursive calls: it blocks

© if a thread + waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» ¢ then has to call again, until an element is available

> &t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

@ if that lock is already taken, proceed if it is taken by the current thread
~ need a way to release the lock after the return of the last recursive call

Atomic Executions, Locks and Monitors 18/40

Monitors: An Automatic, Re-entrant Mutex QLT

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1
» ¢ then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

@ if that lock is already taken, proceed if it is taken by the current thread
—_—n T =Ty -

Atomic Executions, Locks and Monitors 18/40

Implementation of a Basic Monitor T
A monitor contains a mutex s and the thread currently occupying it:
typedef struct moni;;} mon_t; R
stl."uct m?nitol." @int tid; int count; }; /
void monitor_ini “t* m) { }

memset (m, 0, sizeof(mon_t));
. —_——
Define monitor_enter and monitor_leave: 2:525

@ ensure mutual exclusion of accesses to mon_t
@ track how many times we called a monitored procedure recursively
void monitor_enter(mon_t *m) { void monitor leave(mon_t *m) {
bool mine = false; atomic { (mBtid
while (!mine) { m—>coun:%g?:fhhcuagﬁ!:rﬁgﬂ}
atomic { if (m->count==0) { 4

mocount_ L/
// wake up threads
m->tid=0;

mine = thread_id()==m->tid;
if (mine) m->count++; else

if (m->tid==0) {seeft Ad,, }
mine = true; }
m->tid = thr }
N })?(,Q
if ('mipe) de_schedule(&m—>tid!i£})

Atomic Executions, Locks and Monitors 19/40

Rewriting the Queue using Monitors T Rewriting the Queue using Monitors T

Instead of the mutex, we can now use monitors to protect the queue: Instead of the mutex, we can now use monitors to protect the queue:
double-ended queue: monitor version double-ended queue: monitor version
void PushLeft(DQueue* q, int val) { void PushLeft(DQueue* g, int val) {
monitor_enter(q->m) ; —% monitor_enter(q->m);
monitor_leave(q->m) ; —= monitor_leave(q->m);
1 }
void ForAll(DQueue* q, void* data, void (*callback) (void#,int)){ void ForAll(DQueue* q, void* data, void (*callback) (voidx,int)){
monitor_enter(q->m) ; —= monitor_enter(q->m);
for (QWode* gn = g->left->right; qn!=q->right; gn=qn->right) for (QNode* gn = g->left->right; qn!=q->right; qn=qn->right)
(#callback) (data, gn->val); (*callback) (data, gn->val);
monitor_leave(q->m) ; —%, monitor_leave(q->m);
1 }
Recursive calls possible: Recursive calls possible:

@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(q,q,%PushLeft) duplicates entries
e ————

Atomic Executions, Locks and Monitors 20/40 Atomic Executions, Locks and Monitors 0 (ecutions 20/40
Rewriting the Queue using Monitors T Condition Variables ST
Instead of the mutex, we can now use monitors to protect the queue: v Monitors simplify the construction of thread-safe resources.
; ; Still: Efficiency problem when using resource to synchronize:
double-ended queue: monitor version e if a thread ¢ waits for a data structure to be filled:
void PushLeft(DQueue* q, int val) { » + will call e.g. PopRight and obtain -1
monitor_enter(q->m); » ¢ then has toMent is available

> & t is busy waiting and produces contention on the lock

monitor_leave(q->m) ;

+
void ForAll(DQueue* g, void* data, void (*callback) (voidx,int)){

monitor_enter(q->m) ;

for (QNode* gqn = g->left->right; gn!=q->right; gn=qn->right)
(*callback) (data, qn->val);

monitor_leave(q->m) ;

+

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(q,q,&PushLeft) duplicates entries
@ using monitor instead of mutex ensures that recursive call does not block

Atomic Executions, Locks and Monitors 0 tecutio 21/40

Atomic Executions, Locks and Monitors 20/ 40

Condition Variables

v Monitors simplify the construction of thread-safe resources.

Still: Efficiency problem when using resource to synchronize:
e if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» { then has to call again, until an element is available

> &f is busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting:

struct monitor { int s; int tid; int count; int cond; };
e—

21/40

Atomic Executions, Locks and Monitors

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:
@ athread who tries to enter a
monitor is added to queue e if

]

=]

.‘-'i‘ the monitor is occupied
j‘r b

C:‘ Q

e s

n F,.-—--_nt y

aq < waita ./ \J
signal " .
~ - D\?lgnalled

-

{ﬂ wait b

b.q '\
— signalled | —
E/—-.: ~ \ j\) - g

(_ ﬂ 5

N

source: kttp://en.wikipedia.org/uiki/Honiter_(synchronization)

nm

Atomic Executions, Locks and Monitors

Condition Variables B
v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize: Voy ‘&;U’ (] {
o if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g. PopRight and obtain -1 ;
» ¢ then has to call again, until an element is available ——“%
> & t is busy waiting and produces contention on the lock 4., /

Idea: create a condition variable on which to block while waiting’)
int tid; int count; int cond; };

-]

struct monitor { int s;

Define these two functions:
@ uait for the condition to become true Pklet) {

» called while being inside the monitor <= tn.g
g { fam

» temporarily releases the monitor and blocks &—
» when signalled, re-acquires the monitor and returns e=— 3a

©Q signal wamng_threads that they may pe _able to proceed o
» one/all waiting threads that called waif will be woken up, two possibilities:
signal-and-urgent-wait . the signalling thread suspends and continues once

the signalled thread has released the monitor
signal-and-continue the signalling thread continues, any signalled thread

enters when the monitor becomes available

Atomic Executions, Locks and Monitors

21/40

Signal-And-Urgent-Wait Semantics T
Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a

monitor is added to queue e if

the monitor is occupied
@ acalltowait on condition a

adds thread to the queue a.q

. signalled
Stgnal
3

-

L

b.q < yanb
I:E .
_— _§\§|gna|1ed =
~ () i o
Il &

o

source: kttp://en.wikipedia.org/wiki/Monitor_(synchronizetion)

Atomic Executions, Locks and Monitors

Signal-And-Urgent-Wait Semantics T

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue ¢ if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.¢q

@ acallto signal for a adds
thread to queue s (suspended)

0 —
a.q <« |waita

~ 1 . signalled

— (‘/‘ - 7‘/\, ‘
b.q \ waith

s======={_signalled

1

N

N

S0UrCe: nttp://en wikipedia.org/uiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors 22/40

Signhal-And-Urgent-Wait Semantics T

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.¢q

@ acallto signal for ¢ adds
thread to queue s (suspended)

a.q JJ wait a .
L ~. || @ one thread form the a queue is

A~ D\si nalled woken up
- D) \ O ® signal ona is ano-op if a.q is
= waith Vv

bg empty
|:'ﬁ signalled o if a thread leaves, it wakes up
O o ﬂf‘?» " one thread waiting on s

source: kttp://en.wikipedia.org/uiki/Honiter_(synchronization)

Atomic Executions, Locks and Monitors 22/40

Signal-And-Urgent-Wait Semantics T

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

@ acallto signal for « adds

T thread to queue s (suspended)
aq <« |waita V. .
A a— @ one thread form the a queue is
O A D-\?ignalled woken up . ' '
i S @ signal on g is a no-op if a.q is
:b_q ﬂ wait b empty
‘:5 signalled | —
O~ 5 . 8
- U — <
ﬂ @

L
\ 7
v

SOUICe: http://en . uikipedia.org/wiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors 22/40

Signal-And-Urgent-Wait Semantics T

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

@ acallto signal for a adds
thread to queue s (suspended)

aq < wata \/ .
N .|| @ one thread form the « queue is
= 1 s woken u
O Sgnaled P o
~ D——/ O @ signal onais ano-op if a.q is
bg € wait b empty
‘ﬁ:h\signalled = o if a thread leaves, it wakes up
Qo 3 2 one thread waiting on s
- (o] . . .
.ﬂ J e if s is empty, it wakes up one
v thread from e
source r.np:,'/er..m}upe:murgn.m/mgﬂu/r,:sg;r.cr.rummm.) -
Atomic Executions, Locks and Monitors 22/40

Signal-And-Urgent-Wait Semantics T Signal-And-Continue Semantics T

Requires one queues for each condition ¢ and a suspended queue s: Here, the signal function is usually called notify.
=t bt}
@ athread who tries to enter a e
monitor is added to queue e if a @ acallto wait on condition o adds
the monitor is occupied — m— thread to the queue a.q
_ . () () notified \ /
@ acallto wait on condition a .« ~
adds thread to the queue a.¢q ~ - H notified

@ acallto signal for a adds

T L/ thread to queue s (suspended)
aq < wata - @ one thread form the a queue is
AN a
A D\signalled woken up
:ﬂ) O @ signal onaisano-opifa.gis
bg ¢ vatb empty
el signalled | — o if a thread leaves, it wakes up)
O o 58 one thread waiting on s d o
ﬂ . m @ if 5 is empty, it wakes up one %
V thread from e ,

source: http://en.wikipedia.org/wiki/Monitor_{synchronization) . .
~~ queue s has priority over e

source: kttp://en.wikipedia.org/uiki/Honiter_(synchronization)

Atomic Executions, Locks and Monitors 22/40 Atomic Executions, Locks and Monitors 23/40
Signal-And-Continue Semantics T Signal-And-Continue Semantics T
Here, the signal function is usually called notify. Here, the signal function is usually called notify.
(]
% @ acall to wait on condition « adds @ acallto wait on condition ¢ adds
— T thread to the queue a.gq thread to the queue a.q
(% notified L/))
P - @ acallto notify for « adds one @ acallto notify for « adds one
) - E[notified f thread from a.q to e (unless a.q is thread from a.q to e (unless a.q is
DA D empty) empty)
b.g| () I n o if a thread leaves, it wakes up one
a.g J _ _ thread waiting on e
< waita < waita ~ signalled threads compete for the
S \ monitor
) notify) notify
< Waitb < Waitb =
F \.\ . “‘% l\ L
) @
2 <
4] @

S0UrCe: nttp://en. wikipedia.org/wiki/Monitor_(synchronization)

SOUrCe: http://en. uikipedia.org/wiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors

Atomic Executions, Locks and Monitors 23/40

T Signal-And-Continue Semantics T

Here, the signal function is usually called notify.

Signal-And-Continue Semantics

Here, the signal function is usually called notify.
a1 3% @

(0]
% @ acallto wait on condition « adds % @ acallto wait on condition « adds
— y thread to the queue a.q C o thread to the queue a.q
()N notified L/ . . notified ./)
N - @ acallto notify for « adds one - - @ acallto notify for « adds one
e | D otiﬁe%qgiq thread from a.q to e (unless a.q is . . notified thread from a.q to e (unless a.q is
AN empty) B ﬂﬁ‘f';\ i o empty)
o if a thread leaves, it wakes up one bgi - o if a thread leaves, it wakes up one
thread waiting on e a.q pv4 thread waiting on ¢
~ signalled threads compete for the < waita ~ signalled threads compete for the
monitor Y monitor
@ assuming FIFO ordering on e, _ notify @ assuming FIFO ordering on e,
threads who tried to enter Wwait b | threads who tried to enter
between wait and notify will run 1 _ 7 between wait and notify will run
first 8 first
® @ need additional queue s if waiting

threads should have priority

source: kttp://en.wikipedia.org/uiki/Honiter_(synchronization)

source: kttp://en.wikipedia.org/wiki/Monitor_{synchronizetion)

23/40 Atomic Executions, Locks and Monitors

T A Note on Notify T

With signal-and-continue semantics, two notify functions exist:

R

Atomic Executions, Locks and Monitors

Implementing Condition Variables

We implement the simpler signal-and-continue semantics:
@ a notified thread is simply woken up and competes for the monitor

void C_‘lllf(i;ialt (mon_t *m) {()) @ notify: wakes up exactly one thread waiting on condition variable
assert (m->tid==thread_id ; _— o - .
int old count = m-SCoURE: © notifyAll: wakes up all threads waiting on a condition variable
m->count = 0; m->tid = 0;
de_schedule(&m->cond) ;
bool next_to_enter;

e e —
)
{ . void cond_notify(mon_t *m) {
atomic { AP —
, // wake up other threads
next_to_enter = m->tid==0;
. m->cond = 1;
if (next_to_enter) { y————

m->tid = thread_id();
m->count = old_count;

y = == e o dend e
1
if ('mext_to_enter) de_schedule(&m->tid); rzou¢¢£<L,,
while (!next_to_enter__

24/40 Atomic Executions, Locks and Monitors

Atomic Executions, Locks and Monitors

A Note on Notify T A Note on Notify T

With sighal-and-continue semantics, two notify functions exist: With sighal-and-continue semantics, two notify functions exist:
@ notify: wakes up exactly one thread waiting on condition variable @ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable © notifyAll: wakes up all threads waiting on a condition variable
/N an implementation often becomes easier if notify means notify some N an implementation often becomes easier if notify means notify some
——— —me——
~» programmer should assume that thread is not the only one woken up ~+ programmer should assume that thread is not the only one woken up

What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid

Atomic Executions, Locks and Monitors 25/40 Atomic Executions, Locks and Monitors 0 cecutions 25/40

A Note on Notify T A Note on Notify T
With signal-and-continue semantics, two notify functions exist: With signal-and-continue semantics, two notify functions exist:
@ notify: wakes up exactly one thread waiting on condition variable @ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable © notifyAll: wakes up all threads waiting on a condition variable
/N an implementation often becomes easier if notify means notify some /N an implementation often becomes easier if notify means notify some
~~ programmer should assume that thread is not the only one woken up ~+ programmer should assume that thread is not the only one woken up
What about the priority of notified threads? What about the priority of notified threads?
@ a notified thread is likely to block immediately on &m->tid @ a notified thread is likely to block immediately on &m->tid
@ ~- notified threads compete for the monitor with other threads @ ~~ notified threads compete for the monitor with other threads
o if OS implements FIFO order: notified threads will run after threads that o if OS implements FIFO order: notified threads will run after threads that
tried to enter since wait was called tried to enter since wait was called

@ giving priority to waiting threads requires_better interface to OS

Atomic Executions, Locks and Monitors 25/40 Atomic Executions, Locks and Monitors 0 cecutio 25/ 40

Implementing PopRight with Monitors
We use the monitor g->m and the condition variable q->c. PopRight:

double-ended queue: removal

int PopRight (DQueue* q, int wval) {
(ONode* oldRightNode;
monitor_enter(gq->m); // wait to enter the critical section
L: QNode* rightSentinel = g->right;
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) { cond _wait(g->c); goto L; }
(ONode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentingel->left = newRightNode;
monitor_leave(g->m); // signal that we’re done
int val = oldRightNode->val;
free(oldRightNode) ;
return val;

i

Atomic Executions, Locks and Monitors

26 /40

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex

Atomic Executions, Locks and Monitors

Implementing PopRight with Monitors
We use the monitor g->m and the condition variable q->c. PopRight:

double-ended queue: removal

int PopRight (DQueue* q, int val) {
QNode* oldRightNode;
monitor_enter(q->m); // wait to entep- the cri
L: QNode* rightSentinel = g->right;
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) { cond_wait(q->c); goto L;
QNode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentingel->left = newRightNode;
monitor_leave(q->m); // signal that we’re done
int val = oldRightNode->val;
free(oldRightNode) ;
return val;

+

]

@ if the queue is empty, wait on g—>c
@ use a loop, in case the thread is woken up spuriously

Atomic Executions, Locks and Monitors

26 /40

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting

Atomic Executions, Locks and Monitors

Monitor versus Semaphores T Monitor versus Semaphores T

A monitor can be implemented using semaphores: A monitor can be implemented using semaphores:

@ protect each queue with a mutex @ protect each queue with a mutex

@ use a semaphore to block threads that are waiting @ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor: A semaphore can be implemented using a monitor:

@ protect the semaphore variable s with a monitor @ protect the semaphore variable s with a monitor

@ implement wait by calling cond wait if s =0 @ implement wait by calling cond wait if s =0

A note on the history of monitors:

Atomic Executions, Locks and Monitors 27 /40 Atomic Executions, Locks and Monitors 0 cecutions 27 /40

Monitor versus Semaphores i Monitor versus Semaphores T
A monitor can be implemented using semaphores: A monitor can be implemented using semaphores:
@ protect each queue with a mutex @ protect each queue with a mutex
@ use a semaphore to block threads that are waiting @ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor: A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor @ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0 @ implement wait by calling cond wait if s =0
A note on the history of monitors: A note on the history of monitors:
@ condition variables were meant to be associated with a predicatgi @ condition variables were meant to be associated with a predicate p

@ signalling a variables would only wake up a thread if p is true
@ ~~ difficult implement general conditions

Atomic Executions, Locks and Monitors 27 /40 Atomic Executions, Locks and Monitors 0 cecutio 27 /40

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

@ -~ difficult implement general conditions

» OS would have to run code to determine if p holds
» OS would have to ensure atomicity

Atomic Executions, Locks and Monitors

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ ~ difficult implement general conditions

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

@ - difficult implement general conditions

OS would have to run code to determine if p holds

OS would have to ensure atomicity

problematic if p is implemented by arbitrary code

» - wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p

e —— AT——

yvyyvwy

Atomic Executions, Locks and Monitors

¥y vyvyy

Atomic Executions, Locks and Monitors

Monitor versus Semaphores

OS would have to run code to determine if p holds

OS would have to ensure atomicity

problematic if p is implemented by arbitrary code

~» wake up thread and have it check the predicate itself

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond wait if s =0
A note on the history of monitors:
condition variables were meant to be associated with a predicate p
signalling a variables would only wake up a thread if p is true
~ difficult implement general conditions

yvy

>

OS would have to run code to determine if p holds

OS would have to ensure atomicity

problematic if p is implemented by arbitrary code

~» Wake up thread and have it check the predicate itself

create condition variable for each set of threads with the same p

»>

notify variable if the predicate may have changed

or, simpler: notify all threads each time any predicate changes

Atomic Executions, Locks and Monitors

Monitors with a Single Condition Variable T

Monitors with a single condition variable are built into Java and C#:

class C {
public synchronized void f£() {
// body of f
T}

O is equivalent to

g" class C {

7 public void f£() {

' monitd;jgz?g;ry;
wait // body of £

T monitor_leave()f:;

11
with Object containing:

private int mon_var;

private int mon_count;

T . . e ——
\ 7 private int cond_var;
protected voif monitor_enter();
protected void monitor_leave();

SOUICe: http://en. uikipedia.org/wiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors 28/40

Deadlocks with Monitors QI

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence leading to a deadlock:

class Fgo {
public Foo other = null;
S ——
public synchronized void bar() {
. if (*) other.bar();

}

}

and two instances:
Foo = new Foo();
Fo = new Foo();

a.other = b; b.other = a;

// in parallel:
a.bar() || b.bar();

Atomic Executions, Locks and Monitors 29/40

Deadlocks with Monitors B

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

~ 0t P

1

5 o
Deadlocks with Monitors QLR

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar ()

public synchronized void bar() { @ a.bar() acquires the monitor of a
. 1f (*) other.bar();

Consider this Java class:

}
}

and two instances:

Foo a = new Foo();
Foo b = new Foo();
a.other = b; b.other = a;

// in parallel:
a.bar() || b.bar();

Atomic Executions, Locks and Monitors 29/40

Deadlocks with Monitors i

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:
class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar()
public synchronized void bar() { @ a.bar() acquires the monitor of a
, . if (%) other.bar(); @ b.bar () acquires the monitor of b
} @ 4 happens to execute
other.bar()
@ A blocks on the monitor of b

@ B3 happens to execute

other.bar()
pr——)

Consider this Java class:

and two instances:

Foo a = new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar();

Atomic Executions, Locks and Monitors 29/40

Treatment of Deadlocks QI

Deadlocks occur if the following four conditions hold [1]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

Atomic Executions, Locks and Monitors 30/40

Treatment of Deadlocks B

Deadlocks occur if the following four conditions hold [1]:
@ mutual exclusion: processes require exclusive access
e AR
© waii for: a process holds resources while waiting for more
’__-_- . ____————-__.
© no preemption: resources cannot be taken away form processes

Q circular wait: waiting processes form a cycle
e e
The occurrence of deadlocks can be:

Atomic Executions, Locks and Monitors 30/40

Treatment of Deadlocks QLR

Deadlocks occur if the following four conditions hold [1]:
@ mutual exclusion: processes require exclusive access
© wait for. a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
Q@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability towt

Atomic Executions, Locks and Monitors 30/40

Treatment of Deadlocks i

Deadlocks occur if the following four conditions hold [1]:

@ mutual exclusion: processes require exclusive access

© wait for: a process holds resources while waiting for more

@ no preemption: resources cannot be taken away form processes

@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks

are rare
@ detection: check within OS for a cycle, requires ability to preempt
@ prevention: design programs to be deadlock-free

Atomic Executions, Locks and Monitors

Treatment of Deadlocks QI

Deadlocks occur if the following four conditions hold [1]:
@ mutual exclusion: processes require exclusive access
Q _Mfgﬂor: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:
@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare
@ detection: check within OS for a cycle, requires ability to preempt
@ prevention: design programs to be deadlock-free

@ avoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~~ prevention is the only safe approach on standard operating systems
@ can be achieve using lock-free algorithms
@ but what about algorithms that require locking?

Atomic Executions, Locks and Monitors

Treatment of Deadlocks B

Deadlocks occur if the following four conditions hold [1]:

@ mutual exclusion: processes require exclusive access

© waif for. a process holds resources while waiting for more

© no preemption: resources cannot be taken away form processes
Q circular wait: waiting processes form a cycle

The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt

© prevention: design programs to be deadlock-free

Q@ avoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

30/40

Atomic Executions, Locks and Monitors

Deadlock Prevention through Partial Order [/L[]]

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We cal| A(p))C L the lock set at p, that is, the set
of [ocks that may be in the “acquired” e at program point p.

31/40

Atomic Executions, Locks and Monitors

Deadlock Prevention through Partial Order [||/]|]]

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let I denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

v

We require the transitive closure #* of a relation o:

Definition (transitive closure)

Lets C X x X be arelation. Its transitive closure is 0" = | J,,; @' where

a - O

o = o' U{(xy,r3) | Iz2 € X .(x1,72) € 0" A{wa,73) € '}

Atomic Executions, Locks and Monitors 31/40

Deadlock Prevention through Partial Order /|||
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let I denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

Atomic Executions, Locks and Monitors 31/40

