Store Buffers

Goal: continue execution after write operation
@ put each write into a store buffer

Script generated by TTT
CPU A CPUB and trlggerr:eclgpt|sn of CéChj line
. . . @ once a cache line has arrived,
Title: Simon: Programmiersprachen (09.11.2012) apply relevant writes
o store o store » store buffer is a set
Date: Fri Nov 09 11:05:51 CET 2012 buffer buffer] g A\ sequential consistency per
l 1 CPU is violated unless
Duration: 86:04 min cache cache > each read checks store buffer
T T before cache
| » on hit, return the value that is
Pages: 111 waiting to be written
Memory » a write to the same location is
combined with an existing write

What about sequential consistency for the whole system?

18/35

Memory Consistency

T Explicit Synchronisation: Write Barrier

Happened-Before Model for Store Buffers

Thread A Thread B
a=1; while (b == 0) {};))) - .
b= 1; assert(a == 1); Overtaking of messages is desirable and should not be prohibited in general.
@ store buffers render programs incorrect that assume sequential
consistency between different CPUs

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

o .in‘ya.liqﬂ‘!g_g@k %

20/35

Memory Consistency

19/35

Memory Consistency

Happened-Before Model for Write Fences i Invalidate Queue QLT

Thread A Thread B Invalidation of cache lines is costly:

a=1;s0 ihile (b = 0) {}: @ all CPUs in the system need to send an acknowledge
‘%igﬂ%sﬁif- assert(a == 1);

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

a=1 sfe 1

CQC[;@
oD

invalidate et ¥
-~ Invalidate ack

read reSPOLIZ=.

Memory Consistency 21/35 Memory Consistency of-Order Execution of Loads 22/35

Invalidate Queue T

Invalidation of cache lines is costly:
@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

Invalidate Queue T

Invalidation of cache lines is costly:
@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses

Memory Consistency ecution of Load: 22/35 Memory Consistency 22/35

Invalidate Queue

Invalidation of cache lines is costly:

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

CPUA CPUB
store store
buffer] ®— buffer

| |
cache cache
I i
invalidatel invalidate
queue queue
[——

Memory

Memory Consistency

~+ immediately acknowledge an invali-
dation and apply them later

22/35

Invalidate Queue

Invalidation of cache lines is costly:

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

Invalidate Queue

Invalidation of cache lines is costly:

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

)

CPUA CPUB
store store
®— buffer ®— buffen
|
cache cache
[[
invalidate invalidate
ueue queue
| | £

Memory

Memory Consistency

~+ immediately acknowledge an invali-
dation and apply them later

@ put each invalidate message into
an invalidate queue

e if a MESI message needs to be
sent regarding a cache line in the
invalidate queue then wait until
the line is invalidated

22/35

CPU A CPUB
store store
buffer ®— buffer

| |

cache cache

I I

invalidate invalidate)

queue queue

[il

I
Memory

Memory Consistency

Invalidate Queue

Invalidation of cache lines is costly:

~ immediately acknowledge an invali-
dation and apply them later

@ put each invalidate message into
an invalidate queue

22/35

@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

CPUA CPUB
store store
buffer ®— buffer

| |
cache cache
[[
invalidate invalidate
ueue ueue

Memory

Memory Consistency

~+ immediately acknowledge an invali-
dation and apply them later

@ put each invalidate message into
an invalidate queue

e if a MESI message needs to be
sent regarding a cache line in the
invalidate queue then wait until
the line is invalidated

° & read and writes do not consult
the invalidate queue

22/35

Happened-Before Model for Invalidate Buffers [[[]|

Thread A Thread B
a =1 while (b =— 0) {}; Read accesses do not consult the invalidate queue.
sfence(); — . ——
<<z 1. assert(a == 1); @ might read an out-of-date value

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

‘.__.Jnva”da.te.a_@k

Explicit Synchronization: Read Barriers T

24 /35

23/35 Memory Consistency

Memory Consistency

Explicit Synchronization: Read Barriers T

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value
@ need a way to establish sequential consistency between writes of other
processors and local reads
@ insert an explicit read barrier before the read access
JE—
@ Intel x86 CPUs provide the 1fence instruction
@ aread barrier marks all entries in the invalidate queue
@ the next read operation is only executed once all marked invalidations
have completed

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value
@ need a way to establish sequential consistency between writes of other
processors and local reads

Explicit Synchronization: Read Barriers T

24 /35

24/35 Memory Consistency

Memory Consistency

Explicit Synchronization: Read Barriers T Explicit Synchronization: Read Barriers T

Read accesses do not consult the invalidate queue. Read accesses do not consult the invalidate queue.

@ might read an out-of-date value @ might read an out-of-date value

@ need a way to establish sequential consistency between writes of other @ need a way to establish sequential consistency between writes of other
processors and local reads processors and local reads

@ insert an explicit read barrier before the read access @ insert an explicit read barrier before the read access

@ Intel x86 CPUs provide the 1fence instruction @ Intel x86 CPUs provide the 1fence instruction

@ aread barrier marks all entries in the invalidate queue @ aread barrier marks all entries in the invalidate queue

@ the next read operation is only executed once all marked invalidations @ the next read operation is only executed once all marked invalidations
have completed L o Laio aﬁ._. g have completed

@ aread barrier before each read gives sequentially consistent read o @ aread barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue) behavior (and is as slow as a system without invalidate queue)

~+ match each write barrier in one process with a read barrier in another
_-—
process

Memory Consistency 24/35 Memory Consistency ecution of 24/35

Happened-Before Model for Read Fences i Summary: Weakly-Ordered Memory Models [/|L]]]

Thread A Thread B
a=1; while (b == 0) {}; Modern CPUs use a weakly-ordered memory model.
sfence(); lfence(); @ reads and writes are not synchronized unless requested by the user
b =1; assert(a == 1);

invalidate ...~

T

Moy
Q,
& Yl

>
sy

= Oac /

Memory Consistency 25/35 Memory Consistency 26/35

Summary: Weakly-Ordered Memory Models [/[]]] Summary: Weakly-Ordered Memory Models /1]

Modern CPUs use a weakly-ordered memory model. Modern CPUs use a weakly-ordered memory model.
@ reads and writes are not synchronized unless requested by the user @ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences @ many kinds of memory barriers exist with subtle differences
@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86) - I

Memory Consistency 26/35 Memory Consistency Execution of 26/35

Summary: Weakly-Ordered Memory Models][Summary: Weakly-Ordered Memory Models |/ I]]]

Modern CPUs use a weakly-ordered memory model. Modern CPUs use a weakly-ordered memory model.
@ reads and writes are not synchronized unless requested by the user @ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences @ many kinds of memory barriers exist with subtle differences
@ most systems provide on barrier that is both, read and write (e.g. mfence @ most systems provide on barrier that is both, read and write (e.g. mfence
on x86) on x86)
o_ahead-of-time imperative languages can use memory barriers, but @ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect G = compiler optimizations may render programs incorrect
4();, 2 @ use the volatile keyword in C/C++
{,c/r',

Memory Consistency 2635 Memory Consistency 2635

Summary: Weakly-Ordered Memory Models [/[]]] Summary: Weakly-Ordered Memory Models /1]

Modern CPUs use a weakly-ordered memory model. Modern CPUs use a weakly-ordered memory model.

@ reads and writes are not synchronized unless requested by the user @ reads and writes are not synchronized unless requested by the user

@ many kinds of memory barriers exist with subtle differences @ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.9. mfence @ most systems provide on barrier that is both, read and write (e.g. mfence
on x86) on x86)

@ ahead-of-time imperative languages can use memory barriers, but @ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect compiler optimizations may render programs incorrect

@ use the volatile keyword in C/C++ @ use the volatile keyword in C/C++

@ inthe Iatest_(z:_r_:r standard, an access to a volatile variable will @ in the latest C++ standard, an access to a volatile variable will
automatically insert a memory barrier automatically insert a memory barrier

@ otherwise, inline assembler has to be used f«ﬁv—“ a!v'vw;c po

Memory Consistency 26/35 Memory Consistency ecution of 26135

Summary: Weakly-Ordered Memory Models L[] Using Memory Barriers: the Dekker Algorithm /L[]
Mutual exclusion of two processes with busy waiting.

//flagl] is boolean array; and turn is an integer

Modern CPUs use a weakly-ordered memory model: flag[0] = false
@ reads and writes are not synchronized unless requested by the user ilag [l = galsi/ .
urn = or
@ many kinds of memory barriers exist with subtle differences _—
@ most systems provide on barrier that is both, read and write (e.g. mfence PO: P1:
on x86) flag[0] = true; flag[i]l = true;
@ ahead-of-time imperative languages can use memory barriers, but fiils (e I[—i] == true) fie (Eler .['9] == true)
compiler optimizations may render programs incorrect it Cturn !=0) { it (turn != 1) {
_ . flag[0] = false; flag[il]l = false;
@ use the volatile keyword in C/C++ s Qe Jo G T el (Gerran 0= 3
@ in the latest C++ standard, an access to a volatile variable will // busy wait // busy wait
automatically insert a memory barrier } }
@ otherwise, inline assembler has to be used flagl[0] = true; flag[l] = true;
~+ memory barriers are the “lowest-level” of synchronization ¥ o) ¥ o)
#// critical section // critical section
turn = 1; turn = 0;
flag[0] = false; flag[il] = false;

Memory Consistency 26/35 Memory Consistency 2735

|

The Idea Behind Dekker

Communication via three variables:
@ flag[il=true process I’; wants to enter its critical section
@ turn=i process /’; has priority when both want to enter
——

PO: In process P;:

flag[0] = true; e if I, _, does not want to enter,

while (flag[1] == true) proceed immediately to the critical
if (turn != 0) { section
flag[0] = false;

while (turn != 0) {
// busy wait

}

flag[0] = true;
1

// critical section

turn = 1;

flag[0] = false;

Memory Consistency

28/35

The Idea Behind Dekker

Communication via three variables:
@ flag[i]l=true process [’; wants to enter its critical section
@ turn=i process F; has priority when both want to enter

PO: In process P;:

flagl[0] = true; @ if ,_, does not want to enter,

while (flag[1] == true) proceed immediately to the critical
if (turn !'= 0) { section
flag[0] = false;

_ @ -~ flag[i] is a lock and may be
I =
while (turn !=0) { implemented as such
// busy wait .
} e if I7,,; also wants to enter, wait for
tirn to be setto i
AR —

flag[0] = true;
}
// critical section
turn =1;

flag[0] = false;

Memory Consistency

28/35

The Idea Behind Dekker

Communication via three variables:
@ flaglil=true process I, wants to enter its critical section
@ turn=i process [; has priority when both want to enter

PO: In process P;:

flag[0] = true; e if I, _, does not want to enter,

while (flag[i] == true) proceed immediately to the critical
if (turn !'= 0) { section
flag[0] = false; @ - flag[il is a Jock and may be
sily (mmn 12) implemented as such
// busy wait
}
flag[0] = true;
}
// critical section
turn = 1;
flag[0] = false;

Memory Consistency

28 /35

The Idea Behind Dekker

Communication via three variables:
@ flag[il=true process I’; wants to enter its critical section
@ turn=i process [F; has priority when both want to enter

PO: In process P;:
flag[0] = true; @ if ,_, does not want to enter,

while (flag[1] == true) proceed immediately to the critical
if (turn != 0) { section

el ® -~ flag[il is a lock and may be

] 1= .
while (turn !=0) { implemented as such
// busy wait))
} e if ,_; also wants to enter, wait for

turn o be setto i

flag[0] = true;
} @ while waiting for turn, reset flaglil
// critical section to enable ?!1,,- fo progress
turn = 1;

flag[0] = false;

Memory Consistency

28 /35

The Idea Behind Dekker i A Note on Dekker’s Algorithm T

Communication via three variables: Dekker’s algorithm has the three desirable properties:
@ flag[il=true process I’; wants to enter its critical section @ ensure mutual exclusion: at most one process executes the critical
@ turn=i process I’; has priority when both want to enter section
PO: In process P;:
fli}gm] = true; e if I, _, does not want to enter,
while (flag[i] == true) proceed immediately to the critical
if (turn !'= 0) { section

flag[0] = false;
while (turn != 0) {
// busy wait

@ ~~ flag[i] is a lock and may be
implemented as such

} e if I,_; also wants to enter, wait for
£1ag[0] = true; turn to be setto i
} @ while waiting for turn, reset flagl[i]
// critical section to enable I, _; to progress
turn =1 @ algorithm only works for two
flag[0] = false; processes

Memory Consistency 28/35 Memory Consistency 29/35
A Note on Dekker’s Algorithm T A Note on Dekker’s Algorithm T
Dekker’s algorithm has the three desirable properties: Dekker’s algorithm has the three desirable properties:
@ ensure mutual exclusion: at most one process executes the critical @ ensure mutual exclusion: at most one process executes the critical
section section
@ deadlock free: the process will never wait for each other @ deadlock free: the process will never wait for each other

@ free of starvation: if a process wants to enter, it eventually will

Memory Consistency 29/35 Memory Consistency 29/35

A Note on Dekker’s Algorithm T A Note on Dekker’s Algorithm T

Dekker’s algorithm has the three desirable properties: Dekker’s algorithm has the three desirable properties:
@ ensure mutual exclusion: at most one process executes the critical @ ensure mutual exclusion: at most one process executes the critical
section section
@ deadlock free: the process will never wait for each other @ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will @ free of starvation: if a process wants to enter, it eventually will
applications for Dekker: implement a (map o fold) operation concurrently applications for Dekker: implement a (map o fold) operation concurrently
T acc = init(); T acc = init();
for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
<r,U> (EEF’EEP) = nggp,i); <T,U> (acc,tmp) = f(acc,i);
g(tmp, i); g(tmp, 1i);
1 }

@ accumulating a value by performing two operations £ and g in sequence

Memory Consistency 29/35 Memory Consistency 29/35
A Note on Dekker’s Algorithm QI Concurrent Fold I
Dekker’s algorithm has the three desirable properties: Create an n-place buffer for communication between processes ; and P, .
@ ensure mutual exclusion: at most one process executes the critical T acc = init(); i
section Buffer<U> buf = buffer6T>£P); // some buffer object with lock

@ deadlock free: the process will never wait for each other

@ free of starvation: if a process wants to enter, it eventually will o) , . . = : : : :
for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
applications for Dekker: implement a (map o fold) operation concurrently <T,U> (acc,tmp) = f(acc,i); T tmp = buf.get();
T ace = init(): buf . put (tmp) ; aeer= g(tmp, 1i);
H } - } o

for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,i);
g(tmp, 1i);

}

@ accumulating a value by performing two operations £ and g in sequence
@ the calculation in £ of the ith iteration depends on iteration i — 1

Memory Consistency 29/35 Memory Consistency 30/35

Concurrent Fold T Concurrent Fold T

Create an n-place buffer for communication between processes P’y and P,. Create an n-place buffer for communication between processes Py and P,.
T acc = init(); T acc = init();
Buffer<U> buf = buffer<T>(n); // some buffer object with lock Buffer<U> buf = buffer<T>(n); // some buffer object with lock
i Pg: Eois: Pg:
for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) { for (int i = 0; i;g; i++) { for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,i); T tmp = buf.get(); <T,U> (acc,tmp) = f(acc,i); T tmp = buf.get();
buf . put (tmp) ; acc = g(tmp, 1); buf . put (tmp) ; acc = g(tmp, 1);
1 1 } }
If £ and g are similarly expensive, the parallel version might run twice as fast. If £ and g are similarly expensive, the parallel version might run twice as fast.

But busy waiting is bad!

@ the cores might be idle anyway: no harm done (but: energy efficiency?)

Memory Consistency 30/35 Memory Consistency 30/35
Concurrent Fold QLA Concurrent Fold QLR
Create an n-place buffer for communication between processes °; and P,. Create an n-place buffer for communication between processes Py and I
T acc = init(); T acc = init();

Buffer<U> buf = buffer<T>£E); // some buffer object with lock Buffer<U> buf = buffer<T>(n); // some buffer object with lock
IPAE - Pg: |PHE ¢ Pg:
for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,i); T tmp = buf.get(); <T,U> (acc,tmp) = f(acc,i); T tmp = buf.get();
buf . put (tmp) ; acc = g(tmp, 1i); buf . put (tmp) ; acc = gl(tmp, 1i);
} } } }
If £ and g are similarly expensive, the parallel version might run twice as fast. If £ and g are similarly expensive, the parallel version might run twice as fast.
But busy waiting is bad! But busy waiting is bad!
@ the cores might be idle anyway: no harm done (but: energy efficiency?) @ the cores might be idle anyway: no harm done (but: energy efficiency?)
@ f can generate more elements while busy waiting @ f can generate more elements while busy waiting
@ g might remove items in advance, thereby keeping busy if £ is slow
RS Ee—
30/35

30/35 Memory Consistency

Memory Consistency

Concurrent Fold i Generalization to fold o fold

Create an n-place buffer for communication between processes P’y and P,.

T acc = init();
Buffer<U> buf = buffer<T>(n); // some buffer object with lock

Observation: g might also manipulate a state, just like f.

i Pg:

for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,i); T tmp = buf.get();
buf . put (tmp) ; acc = g(tmp, 1);

+ +

If £ and g are similarly expensive, the parallel version might run twice as fast.

But busy waiting is bad!
@ the cores might be idle anyway: no harm done (but: energy efficiency?)
@ f can generate more elements while busy waiting
@ g might remove items in advance, thereby keeping busy if £ is slow
@ ideal scenario: keep busy during busy waiting

31/35

Memory Consistency 30/35 Memory Consistency
Generalization to fold o fold T Generalization to fold o fold
Observation: g might also manipulate a state, just like f. Observation: g might also manipulate a state, just like f.
P

~~ stream processing ~ stream processing

@ general setup in signal/data processing @ general setup in signal/data processing

@ data is manipulated in several stages @ data is manipulated in several stages

@ each stage has an internal state @ each stage has an internal state

@ an item completed in one stage is passed on to the next stage @ an item completed in one stage is passed on to the next stage

Use of Dekker’s algorithm:
@ could be used to pass information between stages

@ but: fairness of algorithm is superfluous
» producer does not need access if buffer is full

31/35

Memory Consistency 31/35 Memory Consistency

Dekker’s Algorithm and Weakly-Ordered T Dekker’s Algorithm and Weakly-Ordered T

Problem: Dekker’s algorithm requires sequentially consistency.

Problem: Dekker’s algorithm requires sequentially consistency.

Idea: insert memory barriers betweena”_\kwgﬂ_tﬂb_oth threads. Idea: insert memory barriers between all variables common to both threads.
PO:
flag[0] = true; .
sfence() ;\ @ insert a read memory
while (1fence(), flag[1] == true) barrier 1fence () in front of
if (1fence(), turn !'= 0) { every ygie to common
flagl0] = false; variables
Sefrence () ;
while (lfence(), turn '= 0) {
// busy wait
}

flag[0] = true;
R
sfence();

}
// critical section
turn = 1;
sfence();

flag[0] = false;

Memory Consistency

32/35 Memory Consistency

32/35

Dekker’s Algorithm and Weakly-Ordered T Dekker’s Algorithm and Weakly-Ordered T

Problem: Dekker’s algorithm requires sequentially consistency.
Idea: insert memory barriers between all variables common to both threads.

Problem: Dekker’s algorithm requires sequentially consistency.
Idea: insert memory barriers between all variables common 1o both threads.

PO: PO:
flag[0] = true; flag[0] = true;
sfence(); @ insert a read memory sfence(); @ insert a read memory
while (lfence(), flag[1] == true) barrier 1fence () in front of while (lfence(), flag[1] == true) barrier 1fence () in front of
if (1fence(), turn '= 0) { every_ we#e-to common if (1fence(), turn '= 0) { every write to common
flag[0] = false; variables flag[0] = false; variables
wirence () ; @ insert a write memory wirence () ; @ insert a write memory
while (1fence(), turn != 0) { barrier sfence() after while (1fence(), turn != 0) { barrier sfence () after
// busy wait writing a variable That is // busy wait writing a variable that is
+ read in the other thread 1 read in the other thread
tlagl0] = true; flagl0] = true; @ the 1fence() of the first
sfence(); sfence();

iteration of each loop may
¥ ¥ be combined with the
preceding sfence() to an
mfence()

// critical section
turn =1;

// critical section
turn =1;
sfence();

sfence();
flag[0] = false;

flag[0] = false;

Memory Consistency

32/35 Memory Consistency

32/35

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and ...

Memory Consistency

33/35

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and ...
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads

—— =

Memory Consistency

33/35

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata

Memory Consistency

]

33/35

Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..

@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads

@ often used in operating systems

Memory Consistency

L

33/35

Discussion m Discussion m

Memory barriers lie at the lowest level of synchronization primitives. Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful? Where are they useful?

@ when several processes implement an automaton and ... @ when several processes implement an automaton and . ..

@ synchronization means coordinating transitions of these automata @ synchronization means coordinating transitions of these automata

@ when blocking should not de-schedule threads @ when blocking should not de-schedule threads

@ often used in operating systems @ often used in operating systems
Why might they not be appropriate? Why might they not be appropriate?

o difficult to get right, possibly inappropriate except for specific, proven o difficult to get right, possibly inappropriate except for specific, proven

_algorithms algorithms
@ often synchronization with Io?cks is as fast and easier

Memory Consistency 33/35 Memory Consistency 33/35
Discussion L Discussion I
Memory barriers lie at the lowest level of synchronization primitives. Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful? Where are they useful?
@ when several processes implement an automaton and ... @ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata @ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads @ when blocking should not de-schedule threads
@ often used in operating systems @ often used in operating systems
Why might they not be appropriate? Why might they not be appropriate?
o difficult to get right, possibly inappropriate except for specific, proven o difficult to get right, possibly inappropriate except for specific, proven
algorithms algorithms
@ often synchronization with locks is as fast and easier @ often synchronization with locks is as fast and easier
@ might be less efficient than locks if store/invalidate buffers are full @ might be less efficient than locks if store/invalidate buffers are full
What do compilers do about barriers? What do compilers do about barriers?
@ C/C++: it's up to the programmer, use volatile for all thread-common @ C/C++: it's up to the programmer, use volatile for all thread-common
variables to avoid optimization that are only correct for sequential variables to avoid optimization that are only correct for sequential
programs programs

@ C++11: use of afomic variables will insert memory barriers
@ Java,Go,...: there is little hope of enough control

Memory Consistency 33/35 Memory Consistency 33/35

Summary i References LG

Memory consistency models:
" @ strict consistency
@ sequential consistency

@ weak consistency @ L. Lamport
llustrating consistency: Time, Clocks, and the Ordering of Events in a Distributed System.
@ happened-before relation Commun. ACM. 21(7):558-565, July 1978.
@ happened-before process diagrams URL http://research.microscft.com/en-us/um/people/lamport/

: bs/time-clocks.pdf.
Intricacy of cache coherence protocols: pubs/time-clocks.p

@ the effect of store buffers ® PE McKenny.
@ the effect of invalidate buffers Memory Barriers: a Hardware View for Software Hackers.

i Technical report, Linux Technology Center, IBM Beaverton, June 2010.
@ the use of memory barriers

Use of barriers in synchronization algorithms:

@ Dekker’s algorjthm

@ stream processing, avoidance of busy waiting

@ inserting fences

Memory Consistency 34/35 Memory Consistency 35/35

]l mesi.pdf - Adobe Reader B ™ transactions.pdf - Adobe Reader =)@

File Edit View Document Tools Window Help
transactions. pdf [}

B & | & 4 (BN (1of188) ® @ (135%)- [-

[
Bookmarks =
= 1& TECHNISCHE ~ UNIVERSITAT ~ MUNCHEN
i — SZ FAKULTAT FOR INFORMATIK
[E] Motivation
[E] wait-Free Atomic
Executions
[IWaitrFree_) .
Sl Programming Languages
— [E] Locked Atomic _—

Executions

Concurrency: Atomic Executions, Locks and Monitors

Dr. Axel Simon and Dr. Michael Petter
Winter term 2012

Atomic Executions, Locks and Monltors 1/40

Why Memory Barriers are not Enough T Why Memory Barriers are not Enough T

Communication via memory barriers has only specific applications: Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads @ coordinating state transitions between threads
@ for systems that require minimal overhead (and no de-scheduling) @ for systems that require minimal overhead (and no de-scheduling)

Often certain pieces of memory may only be modified by one thread at once.
—————
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

e —————

Atomic Executions, Locks and Monitors 2/40 Atomic Executions, Locks and Monitors 2/40
Why Memory Barriers are not Enough i Atomic Executions ML
Communication via memory barriers has only specific applications: A concurrent program consists of several threads that share common

@ coordinating state transitions between threads resources:

@ for systems that require minimal overhead (and no de-scheduling) @ resources are often pieces of memory, but may be an I/O entity

Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion
Need a mechanism to update these pieces of memory as a single atomic

execution:
et
m @ several values of the objects are
=1,b=1 used to compute new value
A / 4’] @ certain information form the thread
a ¥ ‘. .__-" r flows into this computation
b \, ‘. / @ certain information flows from the

computation to the thread

(

Atomic Executions, Locks and Monitors 2/40 Atomic Executions, Locks and Monitors 3/40

Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an I/O entity
» a file can be modified through a shared handle

Atomic Executions, Locks and Monitors

3/40

Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an I/O entity
» a file can be modified through a shared handle

@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

@ during an update, an invariant may be broken

@ an invariant may span several resources

Atomic Executions, Locks and Monitors

3/40

Atomic Executions B

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an I/O entity
» a file can be modified through a shared handle

@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

Atomic Executions, Locks and Monitors

3/40

Atomic Executions QLR

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an I/O entity
» a file can be modified through a shared handle
for each resource an invariant must be retained
» a head and tail pointer must define a linked list
during an update, an invariant may be broken
an invariant may span several resources
~~ several resources must be updated together to ensure the invariant

which particular resources need to be updated may depend on the
current program state

Atomic Executions, Locks and Monitors

3/40

Atomic Executions i Overview B

A concurrent program consists of several threads that share common We will address the established ways of managing synchronization.
resources: @ present techniques are available on most platforms
@ resources are often pieces of memory, but may be an I/O entity
» a file can be modified through a shared handle

@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

@ during an update, an invariant may be broken
@ an invariant may span several resources
@ -~ several resources must be updated together to ensure the invariant

@ which particular resources need to be updated may depend on the
current program state

Ideally, we want to mark a_sequence of operations that update shared
resources for atomic execufion [2]. This would ensure that the invariant never
seem to be broken.

Atomic Executions, Locks and Monitors 3/40 Atomic Executions, Locks and Monitors 4/40
Overview QLA Overview QLR
We will address the established ways of managing synchronization. We will address the established ways of managing synchronization.

@ present technigues are available on most platforms @ present techniques are available on most platforms

@ likely to be found in most existing (concurrent) software @ likely to be found in most existing (concurrent) software

@ techniques provide solutions to solve common concurrency tasks

Atomic Executions, Locks and Monitors 4/40 Atomic Executions, Locks and Monitors 4/40

Overview

We will address the established ways of managing synchronization.
@ present techniques are available on most platforms
@ likely to be found in most existing (concurrent) software
@ techniques provide solutions to solve common concurrency tasks
@ techniques are the source of common concurrency problems

Atomic Executions, Locks and Monitors

4/40

Overview

We will address the established ways of managing synchronization.
@ present technigues are available on most platforms
@ likely to be found in most existing (concurrent) software
@ techniques provide solutions to solve common concurrency tasks
@ techniques are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, C# and other

imperative languages.

Learning Outcomes

@ Principle of Atomic Executions

@ Wait-Free Algorithms based on Atomic Operations
@ Locks: Mutex, Semaphore, and Monitor

@ Deadlocks: Concept and Prevention

Atomic Executions, Locks and Monitors

4/40

Overview

We will address the established ways of managing synchronization.
@ present techniques are available on most platforms
@ likely to be found in most existing (concurrent) software
@ techniques provide solutions to solve common concurrency tasks
@ techniques are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, C# and other

imperative languages. -

Atomic Executions, Locks and Monitors

4/40

Atomic Execution: Varieties

Definition (Atomic Execution)

L

A computation forms an atomic execution if its effect can only be observed as

a single transformation on the memaory.

Atomic Executions, Locks and Monitors

5/40

i

Atomic Execution: Varieties

Definition (Atomic Execution)
A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:

Wait-Free : an atomic execution always succeeds and never blocks
_alt-rre always succeed

Lock-Free : an atomic execution may fail but never blocks
——-—-_— iy

Locked : an atomic execution always succeeds but may block the thread
ﬂ- i . K i _-———-_——--—_____
Transaction : an atomic execution may fail (and may implement recovery)

Atomic Executions, Locks and Monitors 5/40
Wait-Free Updates QI
Which operations on a CPU are atomic executions?
Program 2 Program 3
Program 1 L int tmp = 1i;
i++; J - :!" i = J: =
i = 1i+k; .
—— J = tmp;
6/40

Atomic Executions, Locks and Monitors

]

Atomic Execution: Varieties

Definition (Atomic Execution)
A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:
~ Wait-Free : an atomic execution always succeeds and never blocks
— Lock-Free : an atomic execution may fail but never blocks
Locked : an atomic execution always succeeds but may block the thread
Transaction : an atomic execution may fail (and may implement recovery)

These classes differ in

amount of data they can access during an atomic execution
— e —

expressivity of operations they allow
granularity of objects in memory they require
i ———
Atomic Executions, Locks and Monitors 5/40
Wait-Free Updates QLR
Which operations on a CPU are atomic executions?
Program 2 Program 3
Program 1 L int tmp = i;
i++; J - :!" i = J ;
. i = i+k; C = tmpe
~ Yhou rax, [-9.;] L b
ANSWer add vax, feuy weeer (i) e Ame [2: 7
@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
6/40

Atomic Executions, Locks and Monitors

Wait-Free Updates T
Which operations on a CPU are atomic executions?

Program 2 Program 3
Program 1 L int tmp = i;

14+;] =L i=73;
i = i+k; .
J = tmp;

Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:

Atomic Executions, Locks and Monitors 6/40
Wait-Free Updates QI
Which operations on a CPU are atomic executions?

Program 2 Program 3
Program 1 L int tmp = 1i;

i++; J - :!" i = j;
i = i+k; .
J = tmp;

Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can /ock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a lock inc [addr_il] instruction

Atomic Executions, Locks and Monitors 0 cecutions 6/40

Wait-Free Updates T

Which operations on a CPU are atomic executions?

Program 3
Program 2 9
Program 1 L int tmp = 1i;
P4+, 3= i=3;
i = i+k; .
] = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can_.’_o_c§ the cache for the duration of an instruction; on x86:

Atomic Executions, Locks and Monitors 6/40
Wait-Free Updates QLR
Which operations on a CPU are atomic executions?
Program 2 Program 3
Program 1 . . int tmp = i;
R J = 1) & ..
i++; = itk =173
i itk; e— j = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions

The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can /ock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a lock inc [addr_i] instruction
@ Program 2 can be implemented using mov eax k;

lock xadd [addr_i],eax;
— — —— F

mov [addr_j],eax
—— R]

Atomic Executions, Locks and Monitors 6/40

Wait-Free Updates T

Which operations on a CPU are atomic executions?

Program 3
Program 2 9
Program 1 L int tmp = i;
14+;] =L i=73;
i = i+k; .
J = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can /ock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a 1eck inc [addr il instruction

@ Program 2 can be implemented using mov eax,k;
lock xadd [addr_il,eax; mov [addr_jl,eax
@ Program 3 can be implemented using leek xchg [addr_il, [addr_j]

Atomic Executions, Locks and Monitors 6/40

Wait-Free Bumper-Pointer Allocation T
Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation —-

char heaE[Z"ZO];
char* firstFree = &heap[0];
—~e————

char* alloc(int size) {
A rg—
char* start = firstFree;
firstFree = firstFree + size;
if (start+size>sizeof (heap)) garbage_collect();
return start;

i

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

Atomic Executions, Locks and Monitors 0 cecutions 7/40

Wait-Free Updates T
Which operations on a CPU are atomic executions?

Program 2 Program 3
Program 1 L int tmp = 1i;

P4+, 3= i=3;
i = i+k;
J = tmp;

Answer:

@ none by default (even without store and invalidate buffers,why?)

@ but all of them can be atomic executions
The programs can be atomic executions:

@ i must be in memory (e.g. declare as volatile)

@ most CPUs can /ock the cache for the duration of an instruction; on x86:

@ Program 1 can be implemented using a lock inc [addr i] instruction

@ Program 2 can be implemented using mov eax,k;

lock xzadd [addr_il,eax; mov [addr_jl,eax

@ Program 3 can be implemented using lock xchg [addr il, [addr j]
N\ Without lock, the load and store generated by i++ may be interleaved
with a store rom another processor. -

Atomic Executions, Locks and Monitors 6/40

Wait-Free Bumper-Pointer Allocation AT

Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[2720];
charx firstFree = &heap[0];

char* alloc(int size) {
char* start = firstFree;
firstFree = firstFree + gize;
if-T;Eart+size>sizeof(heap)) garbage_collect () ;
return start;
=

+

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

Atomic Executions, Locks and Monitors 7/40

Wait-Free Bumper-Pointer Allocation T Marking Statements as Atomic T

Garbage collectors often use a bumper pointer to allocated memory: Rather than writing assembler: use made-up keyword atomic:

. . Program 3
Bumper Pointer Allocation Program 2 9
Program 1 . atomic {
char heap[27°20]; . atomic { . .
. atomic { . . int tmp = 1i;
char* firstFree = &heap[0]; . j = 1i; .
1++; 4 = S i1 = 73
char* alloc(int size) { ¥ 1 } J = tmp;
char* start = firstFree;
firstFree = firstFree + size;
if (start+size>sizeof (heap)) garbage_collect();
return start;
}
@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap
Thread-safe implementation:
@ the glloc function can be used from multiple threads when implemented
using a 1ock@[i irstFree],eax instruction
@ - requires inliNe assembler =——
Atomic Executions, Locks and Monitors 7/40 Atomic Executions, Locks and Monitors
Marking Statements as Atomic T Marking Statements as Atomic T
Rather than writing assembler: use made-up keyword atomic: Rather than writing assembler: use made-up keyword atomic:
Program 2 Program 3 Program 2 Program 3
Program 1 atomic { Program 1 atomic {
) atomic { i)) atomic { i)
atomic { . int tmp = i; atomic { g int tmp = i;
i4+;] =L i=3; i+ 3= i= g
i = i+k; . i = i+k; .
!) = tups ¥ j = tmp;
’ } ’ }

The statements in an atomic block execute as atomic execution: The statements in an atemic block execute as atomic execution:

tomic { tmp = i; i = j; j = tmp }

i

J
tmp /\

a;omic {tmp = i; i =3; j = tmi.L

tmp

@ atomic only translatable when a corresponding atomic CPU instruction
exist
@ the notion of requesting atomic execution is a general concept

8/40 Atomic Executions, Locks and Monitors

Atomic Executions, Locks and Monitors

Marking Statements as Atomic T Wait-Free Synchronization T

Rather than writing assembler: use made-up keyword atomic: Wait-Free algorithms are limited to a single instruction:

Program 2 R @ no control flow possible, no behavioral change depending on data

Program 1 atomic { —

i atomic { . .
atomic { . int tmp = i;

i++; J .’ i = j;
1 = 1i+k; .
} } j = tmp;
——s i

The statements in an atomic block execute as afomic execui:‘fon:

tmp

@ atomic only translatable when a corresponding atomic CPU instruction
exist

@ the notion of requesting atomic execution is a general concept

Atomic Executions, Locks and Monitors 8/40 Atomic Executions, Locks and Monitors Synchronizatio 9/40
Wait-Free Synchronization T Wait-Free Synchronization T
Wait-Free algorithms are limited to a single instruction: Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data @ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally @ instructions often exist that execute an operation conditionally
Program 4 Program 5 Program 6
atomic { atomic { atomic {
b = 0;&— b =1; & if (r) i = j;
} } }

Atomic Executions, Locks and Monitors 9/40 Atomic Executions, Locks and Monitors Synchronizatio 9/40

Wait-Free Synchronization T Wait-Free Synchronization T

Wait-Free algorithms are limited to a single instruction: Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data @ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally @ instructions often exist that execute an operation conditionally
Program 4 & Program 5 Program 6 <« Program 4 Program 5 Program 6
atomic { atomic { atomic { 4=’] atomic { atomic { atomic {
r = b; r = b; r = (k==1); :]:-0 r = b; r = b; r = (k==1i);
b = 0; b =1; if(rii=j; b = 0; b =1, if (r) i = j;
1 1 = 1 } } }
Operations_updaie a memory cell and refurn the previous value. Operations update a memory cell and return the previous value.
@ the first two operations can be seen as setting aflagbto v € {0, 1} ifb @ the first two operations can be seen as setting aflagbtov € {0,1} ifb
not already contains v e not already contains v
» this operation is called modify-and-test » this operation is called modify-and-test
@ the third case generalizes this to arbitrary values @ the third case generalizes this to arbitrary values
» this operation is called compare-and-swap » this operation is called compare-and-swap
~+ Use as building blocks for algorithms that can faj/
Atomic Executions, Locks and Monitors 9/40 Atomic Executions, Locks and Monitors Synchronizatio 9/40
Lock-Free Algorithms T Lock-Free Algorithms T
If a wait-free implementation is not possible, a lock-free implementation might If a wait-free implementation is not possible, a lock-free implementation might

still be viable. still be viable. R
Common usage pattern for compare and swap: clenlety A= i((. {JI

@ read the initial value ini into & (using memory barriersf=

@ calculate a new value j = f(k)

e S

© update i to j if i = k still holds
— —

© go tofirst step if i # k meanwhile

Atomic Executions, Locks and Monitors 10/40 Atomic Executions, Locks and Monitors Synchronizatio 10/ 40

Lock-Free Algorithms T

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.

Common usage pattern for compare and swap:
@ read the initial value in 7 into & (using memory barriers)
@ calculate a new value j = f(k)
© update i to j if i = & still holds
@ go to first step if i # & meanwhile
~ general recipe for lock-free algorithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into n bytes
@ read these bytes atomically -
@ calculate a new value
@ perform amd-swap operation on these n bytes

Atomic Executions, Locks and Monitors 10/40

Limitations of Wait- and Lock-Free Algorithms [/

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operations

Atomic Executions, Locks and Monitors 11/40

Lock-Free Algorithms T

If a wait-free implementation is not possible, a /ock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
© calculate a new value j = f(k)
© update i to j if i = k still holds
© go to first step if i # &k meanwhile
~- general recipe for lock-free algorithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into » bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on these n bytes
~ calculating new value must be repeatable

Atomic Executions, Locks and Monitors Synchronizatio 10/40

Limitations of Wait- and Lock-Free Algorithms /L[]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:

@ restricted to the semantics of a single atomic operations
@ set of atomic operations is architecture specific, but often includes

>

Atomic Executions, Locks and Monitors Synchronizatio 11/40

Limitations of Wait- and Lock-Free Algorithms ||]|]| Limitations of Wait- and Lock-Free Algorithms /|||

Wait-/Lock-Free algorithms are severely limited in terms of their computation: Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operations @ restricted to the semantics of a single atomic operations
@ set of atomic operations is architecture specific, but often includes @ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register » exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory
» modify-and-test on bits in memory

compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand @ provided instructions usually allow only one memory operand
~+ only very simple algorithms can be implemented, for instance
binary semaphores : a flag that can be acquired (set) if free (unset) and

¥y vy

released
Atomic Executions, Locks and Monitors 11/40 Atomic Executions, Locks and Monitors Synchronizatio 11/40
Limitations of Wait- and Lock-Free Algorithms [[[]| Semaphores and Mutexes T
Wait-/Lock-Free algorithms are severely limited in terms of their computation: A (counting) semaphore is an integer s with the following operations:
@ restricted to the semantics of a single atomic operations void wait() {

e set of atomic operations is architecture specific, but often includes bool avail;

. ; do {
» exchange of a memory cell with a register . . .
. . void signal() { atomic {
» compare-and-swap of a register with a memory cell] a . L)
» fetch-and-add on integers in memory atomic { & =8+ 1; } avail = s>0;
» modify-and-test on bits in memory ¥) if (avail) s--;
@ provided instructions usually allow only one memory operand } while (lavail):
~ only very simple algorithms can be implemented, for instance 3 ’
binary semaphores : a flag that can be acquired (set) if free (unset) and A counting semaphore can track how many resources are still available.
released
counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore

Atomic Executions, Locks and Monitors 11/40 Atomic Executions, Locks and Monitors 12740

