Script generated by TTT

Title: Info2 (30.10.2015)

Date: Fri Oct 30 08:34:13 CET 2015

Duration: 88:46 min

Pages: 49

1.2 Korrektheit

Fragen

- Welche Programm-Eigenschaften k\u00f6nnen wir mithilfe lokal konsistenter Annotierungen garantieren ?
- Wie k\u00f6nnen wir nachweisen, dass unser Verfahren keine falschen Ergebnisse liefert ??

Zusammenfassung der Methode

- Annotiere jeden Programmpunkt mit einer Zusicherung.
- Überprüfe für jede Anweisung s zwischen zwei Zusicherungen A und B, dass A die schwächste Vorbedingung von s für B impliziert, d.h.:

$$A \Rightarrow \mathbf{WP}[s](B)$$

Überprüfe entsprechend für jede Verzweigung mit Bedingung b, ob die Zusicherung A vor der Verzweigung die schwächste Vorbedingung für die Nachbedingungen B_0 und B_1 der Verzweigung impliziert, d.h.

$$A \Rightarrow \mathbf{WP}\llbracket b \rrbracket (B_0, B_1)$$

Solche Annotierungen nennen wir lokal konsistent.

48

Erinnerung (1):

 In MiniJava können wir ein Zustand σ aus einer Variablen-Belegung, d.h. einer Abbildung der Programm-Variablen auf ganze Zahlen (ihren Werten), z.B.:

$$\sigma = \{x \mapsto 5, y \mapsto -42\}$$

Erinnerung (1):

$$\sigma = \{x \mapsto 5, y \mapsto -42\}$$

• Ein Zustand σ erfüllt eine Zusicherung A, falls

$$A[\sigma(x)/x]_{x\in A}$$

// wir substituieren jede Variable in A durch ihren Wert in σ eine wahre Aussage ist, d.h. äquivalent **true**.

Wir schreiben: $\sigma \models A$.

51

Beispiel:

$$\sigma = \{x \mapsto 5, y \mapsto 2\}$$

$$A = (x > y)$$

$$A[5/x, 2/y] = (5 > 2)$$

$$\equiv \text{ true}$$

$$\sigma = \{x \mapsto 5, y \mapsto 12\}$$

$$A \equiv (x > y)$$

$$A[5/x, 12/y] \equiv (5 > 12)$$

$$\equiv \text{ false}$$

53

Beispiel:

$$\sigma = \begin{cases} x \mapsto (5, y) \mapsto (2) \\ A = (x > y) \\ A[5/x, 2/y] = (5 > 2) \\ \equiv \text{ true} \end{cases}$$

52

Triviale Eigenschaften:

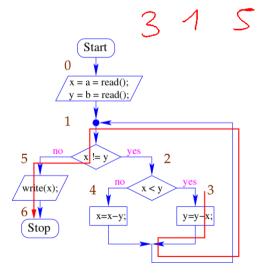
$$\sigma \models \text{true}$$
 für jedes σ
 $\sigma \models \text{false}$ für kein σ

Erinnerung (2):

- Eine Programmausführung π durchläuft einen Pfad im Kontrollfluss-Graphen.
- Sie beginnt in einem Programmpunkt u_0 in einem Anfangszustand σ_0 . und führt in einen Programmpunkt u_m und einen Endzustand σ_m .
- Jeder Schritt der Programm-Ausführung führt eine Aktion aus und ändert Programmpunkt und Zustand.

55

Beispiel:



Erinnerung (2):

- Eine Programmausführung π durchläuft einen Pfad im Kontrollfluss-Graphen.
- Sie beginnt in einem Programmpunkt u_0 in einem Anfangszustand σ_0 . und führt in einen Programmpunkt u_m und einen Endzustand σ_m .
- Jeder Schritt der Programm-Ausführung führt eine Aktion aus und ändert Programmpunkt und Zustand.

 \longrightarrow Wir können π als Folge darstellen:

$$(u_0, \sigma_0)s_1(u_1, \sigma_1)\ldots s_m(u_m, \sigma_m)$$

wobei die s_i Elemente des Kontrollfluss-Graphen sind, d.h. Anweisungen oder Bedingungen ...

56

Nehmen wir an, wir starten in Punkt 3 mit $\{x \mapsto 6, y \mapsto 12\}$.

Dann ergibt sich die Programmausführung:

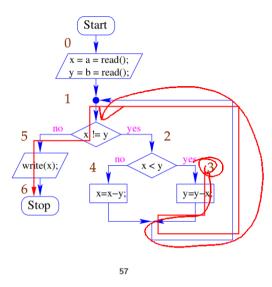
$$\pi = (3, \{x \mapsto 6, y \mapsto 12\}) \quad y = y - x;$$

$$(1, \{x \mapsto 6, y \mapsto 6\}) \quad !(x != y)$$

$$(5, \{x \mapsto 6, y \mapsto 6\}) \quad \text{write}(x);$$

$$(6, \{x \mapsto 6, y \mapsto 6\})$$

Beispiel:



Nehmen wir an, wir starten in Punkt 3 mit $\{x \mapsto 6, y \mapsto 12\}$.

Dann ergibt sich die Programmausführung:

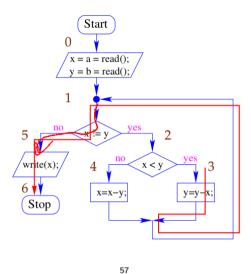
$$\pi = (3, \{x \mapsto 6, y \mapsto 12\}) \quad y = y-x;$$

$$(1, \{x \mapsto 6, y \mapsto 6\}) \quad !(x != y)$$

$$(5, \{x \mapsto 6, y \mapsto 6\}) \quad \text{write}(x);$$

$$(6, \{x \mapsto 6, y \mapsto 6\})$$

Beispiel:



Erinnerung (2):

- Eine Programmausführung π durchläuft einen Pfad im Kontrollfluss-Graphen.
- Sie beginnt in einem Programmpunkt u_0 in einem Anfangszustand σ_0 . und führt in einen Programmpunkt u_m und einen Endzustand σ_m .
- Jeder Schritt der Programm-Ausführung führt eine Aktion aus und ändert Programmpunkt und Zustand.

 \Longrightarrow Wir können π als Folge darstellen:

$$(u_0, \sigma_0)s_1(u_1, \sigma_1)\ldots s_m(u_m, \sigma_m)$$

wobei die s_i Elemente des Kontrollfluss-Graphen sind, d.h. Anweisungen oder Bedingungen ...

Nehmen wir an, wir starten in Punkt 3 mit $\{x \mapsto 6, y \mapsto 12\}$.

Dann ergibt sich die Programmausführung:

$$\pi = (3, \{x \mapsto 6, y \mapsto 12\}) \quad y = y - x;$$

$$(1, \{x \mapsto 6, y \mapsto 6\}) \quad !(x != y)$$

$$(5, \{x \mapsto 6, y \mapsto 6\}) \quad \text{write}(x);$$

$$(6, \{x \mapsto 6, y \mapsto 6\})$$

58

Satz:

Sei p ein MiniJava-Programm, Sei π eine Programmausführung, die im Programmpunkt u startet und zum Programmpunkt v führt.

Annahmen:

- Die Programmpunkte von *p* seien lokal konsistent mit Zusicherungen annotiert.
- $\bullet \quad \mathsf{Der} \; \mathsf{Programmpunkt} \quad \textcolor{red}{\textit{\textit{u}}} \quad \mathsf{sei} \; \mathsf{mit} \quad A \quad \mathsf{annotiert}.$
- Der Programmpunkt v sei mit B annotiert.

Dann gilt:

Erfüllt der Anfangszustand von π die Zusicherung A , dann erfüllt der Endzustand die Zusicherung B.

Satz:

Sei p ein MiniJava-Programm, Sei π eine Programmausführung, die im Programmpunkt u startet und zum Programmpunkt v führt.

Annahmen:

- Die Programmpunkte von p seien lokal konsistent mit Zusicherungen annotiert.
- Der Programmpunkt u sei mit A annotiert.
- Der Programmpunkt v sei mit B annotiert.

59

Satz:

Sei p ein MiniJava-Programm, Sei π eine Programmausführung, die im Programmpunkt u startet und zum Programmpunkt v führt.

Annahmen:

- Die Programmpunkte von p seien lokal konsistent mit Zusicherungen annotiert.
- ullet Der Programmpunkt ${\it u}$ sei mit A annotiert.
- Der Programmpunkt v sei mit B annotiert.

Dann gilt:

Erfüllt der Anfangszustand von $\ \pi$ die Zusicherung $\ A$, dann erfüllt der Endzustand die Zusicherung $\ B.$

Bemerkungen:

- Ist der Startpunkt des Programms mit true annotiert, dann erfüllt jede Programmausführung, die den Programmpunkt v erreicht, die Zusicherung an v.
- Zum Nachweis, dass eine Zusicherung A an einem Programmpunkt v gilt, benötigen wir eine lokal konsistente Annotierung mit zwei Eigenschaften:
 - (1) der Startpunkt ist mit true annotiert;
 - (2) Die Zusicherung an v impliziert A.

61

Bemerkungen:

- Ist der Startpunkt des Programms mit **true** annotiert, dann erfüllt jede Programmausführung, die den Programmpunkt v erreicht, die Zusicherung an v.
- Zum Nachweis, dass eine Zusicherung A an einem Programmpunkt v gilt, benötigen wir eine lokal konsistente Annotierung mit zwei Eigenschaften:
 - (1) der Startpunkt ist mit true annotiert;
 - (2) Die Zusicherung an v impliziert A.

Bemerkungen:

- Ist der Startpunkt des Programms mit true annotiert, dann erfüllt jede Programmausführung, die den Programmpunkt v erreicht, die Zusicherung an v.
- Zum Nachweis, dass eine Zusicherung A an einem Programmpunkt v gilt, benötigen wir eine lokal konsistente Annotierung mit zwei Eigenschaften:
 - der Startpunkt ist mit true annotiert;
 - (2) Die Zusicherung an v impliziert A.
- Unser Verfahren gibt (vorerst) keine Garantie, dass v überhaupt erreicht wird !!!
- Falls ein Programmpunkt v mit der Zusicherung false annotiert werden kann, kann v nie erreicht werden.

62

Bemerkungen:

- Ist der Startpunkt des Programms mit **true** annotiert, dann erfüllt jede Programmausführung, die den Programmpunkt v erreicht, die Zusicherung an v.
- Zum Nachweis, dass eine Zusicherung A an einem Programmpunkt v gilt, benötigen wir eine lokal konsistente Annotierung mit zwei Eigenschaften:
 - (1) der Startpunkt ist mit true annotiert;
 - (2) Die Zusicherung an v impliziert A.
- Unser Verfahren gibt (vorerst) keine Garantie, dass v überhaupt erreicht wird !!!
- Falls ein Programmpunkt v mit der Zusicherung false annotiert werden kann, kann v nie erreicht werden.

Beweis:

Sei $\pi = (u_0, \sigma_0) s_1(u_1, \sigma_1) \dots s_m(u_m, \sigma_m)$

Gelte: $\sigma_0 \models A$.

Wir müssen zeigen: $\sigma_m \models B$.

Idee:

Induktion nach der Länge m der Programmausführung.

63

1.3 Optimierung

Ziel: Verringerung der benötigten Zusicherungen

Beobachtung

Hat das Programm keine Schleifen, können wir für jeden Programmpunkt eine hinreichende Vorbedingung ausrechnen !!!

Fazit:

- Das Verfahren nach Floyd ermöglicht uns zu beweisen, dass eine Zusicherung B bei Erreichen eines Programmpunkts stets (bzw. unter geeigneten Zusatzannahmen) gilt ...
- Zur Durchführung benötigen wir:

Zusicherung true am Startpunkt.

- Zusicherungen an jedem weiteren Programmpunkt.
- Nachweis, dass die Zusicherungen lokal konsistent sind

⇒ Logik, automatisches Beweisen

64

Fazit:

- Das Verfahren nach Floyd ermöglicht uns zu beweisen, dass eine Zusicherung B bei Erreichen eines Programmpunkts stets (bzw. unter geeigneten Zusatzannahmen) gilt ...
- Zur Durchführung benötigen wir:
 - Zusicherung **true** am Startpunkt.
 - Zusicherungen an jedem weiteren Programmpunkt.
 - Nachweis, dass die Zusicherungen lokal konsistent sind

⇒ Logik, automatisches Beweisen

1.3 Optimierung

Ziel: Verringerung der benötigten Zusicherungen

Beobachtung

Hat das Programm keine Schleifen, können wir für jeden Programmpunkt eine hinreichende Vorbedingung ausrechnen !!!!

65

Beispiel (Fort.)

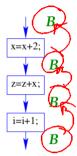
Sei
$$B \equiv z = i^2 \land x = 2i - 1$$

Dann rechnen wir:

$$B_1 \equiv \mathbf{WP}[[i = i+1;]](B) \equiv z = (i+1)^2 \land x = 2(i+1) - 1$$

$$\equiv z = (i+1)^2 \land x = 2i+1$$

Beispiel

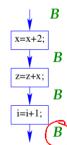


66

Beispiel

$$x = x+2;$$

 $z = z+x;$
 $i = i+1;$



Beispiel (Fort.)

Sei
$$B \equiv z = i^2 \land x = 2i - 1$$

Dann rechnen wir:

$$B_1 \equiv \mathbf{WP}[[i = i+1;]](B) \equiv z = (i+1)^2 \land x = 2(i+1) - 1$$

$$\equiv z = (i+1)^2 \land x = 2i+1$$

67

Beispiel (Fort.)

Sei
$$B \equiv z = i^2 \land x = 2i - 1$$

Dann rechnen wir:

$$B_{1} \equiv \mathbf{WP}[i = i+1;](B) \equiv z = (i+1)^{2} \land x = 2(i+1) - 1$$

$$\equiv z = (i+1)^{2} \land x = 2i + 1$$

$$B_{2} \equiv \mathbf{WP}[z = z+x;](B_{1}) \equiv z + x = (i+1)^{2} \land x = 2i + 1$$

$$\equiv z = i^{2} \land x = 2i + 1$$

$$B_{3} \equiv \mathbf{WP}[x = x+2;](B_{2}) \equiv z = i^{2} \land x + 2 = 2i + 1$$

$$\equiv z = i^{2} \land x = 2i - 1$$

$$\equiv B$$

Beispiel (Fort.)

Sei
$$B \equiv z = i^2 \land x = 2i - 1$$

Dann rechnen wir:

$$B_1 \equiv \mathbf{WP}[[i = i+1;]](B) \equiv z = (i+1)^2 \land x = 2(i+1) - 1$$

 $\equiv z = (i+1)^2 \land x = 2i + 1$
 $B_2 \equiv \mathbf{WP}[[z = z+x;]](B_1) \equiv z + 1 = (i+1)^2 \land x = 2i + 1$
 $\equiv z = i^2 \land x = 2i + 1$

68

Idee

- Für jede Schleife wähle einen Programmpunkt aus.
 - Sinnvolle Auswahlen:
 - → Vor der Bedingung;
 - → Am Beginn des Rumpfs;
 - → Am Ende des Rumpfs ...
- Stelle f
 ür jeden gewählten Punkt eine Zusicherung bereit
 - =⇒ Schleifen-Invariante
- Für alle übrigen Programmpunkte bestimmen wir Zusicherungen mithilfe $\mathbf{WP}[\![\ldots]\!]()$.

Beispiel

```
int a, i, x, z;
a = read();
i = 0;
x = -1;
z = 0;
while (i != a) {
    x = x+2;
    z = z+x;
    i = i+1;
}
assert(z==a*a);
write(z);
```

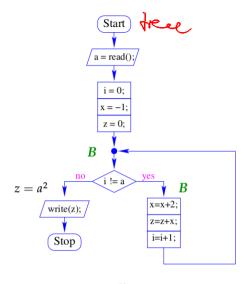
71

Wir überprüfen:

$$\begin{aligned}
\mathbf{WP} & [\![\mathbf{i} \] ! = \mathbf{a}]\!] (z = a^2, B) \\
& \equiv (i = a \land z = a^2) \lor (i \neq a \land B) \\
& \equiv (i = a \land z = a^2) \lor (i \neq a \land z = i^2 \land x = 2i - 1) \\
& \Leftarrow (i \neq a \land z = i^2 \land x = 2i - 1) \lor (i = a \land z = i^2 \land x = 2i - 1) \\
& \equiv z = i^2 \land x = 2i - 1 \equiv B
\end{aligned}$$

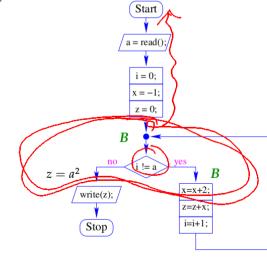
73

Beispiel



72

Beispiel



Wir überprüfen:

$$\begin{aligned} \mathbf{WP} & [\![\mathbf{i} \ ! = \mathbf{a}]\!] (z = a^2, B) \\ & \equiv \quad (i = a \land z = a^2) \lor (i \neq a \land B) \\ & \equiv \quad (i = a \land z = a^2) \lor (i \neq a \land z = i^2 \land x = 2i - 1) \end{aligned}$$

$$\begin{aligned} & \leftarrow \quad (i \neq a \land z = i^2 \land x = 2i - 1) \lor (i = a \land z = i^2 \land x = 2i - 1) \\ & \equiv \quad z = i^2 \land x = 2i - 1 \quad \equiv \quad B \end{aligned}$$

73

Wir überprüfen:

$$WP[[z = 0;]](B) = 0 = i^{2} \land x = 2i - 1$$

$$\equiv i = 0 \land x = -1$$

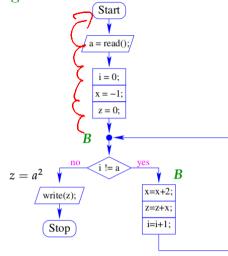
$$WP[[x = -1;]](i = 0 \land x = -1) \equiv i = 0$$

$$WP[[i = 0;]](i = 0) \equiv \text{true}$$

$$WP[[a = read();]](\text{true}) \equiv \text{true}$$

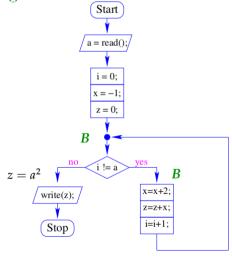
Ha. Ime

Orientierung



74

Orientierung



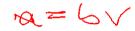
74

Wir überprüfen:

$$\begin{aligned} \mathbf{WP} [\![\mathbf{z} = 0 ;]\!] (B) & \equiv & 0 = i^2 \wedge x = 2i - 1 \\ & \equiv & i = 0 \wedge x = -1 \end{aligned} \\ \mathbf{WP} [\![\mathbf{x} = -1 ;]\!] (i = 0 \wedge x = -1) & \equiv & i = 0 \\ \mathbf{WP} [\![\mathbf{i} = 0 ;]\!] (i = 0) & \equiv & \mathbf{true} \end{aligned} \\ \mathbf{WP} [\![\mathbf{a} = \mathbf{read}() ;]\!] (\mathbf{true}) & \equiv & \mathbf{true} \end{aligned}$$

75

Beispiele



- Das ggT-Programm terminiert nur für Eingaben a,b mit: a>0 und b>0.
- Das Quadrier-Programm terminiert nur für Eingaben $a \ge 0$.
- while (true); terminiert nie.
- Programme ohne Schleifen terminieren immer!

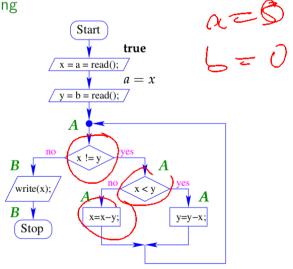
1.4 Terminierung

Problem

- Mit unserer Beweistechnik können wir nur beweisen, dass eine Eigenschaft gilt wann immer wir einen Programmpunkt erreichen !!!
- Wie können wir aber garantieren, dass das Programm immer terminiert?
- Wie können wir eine Bedingung finden, unter der das Programm immer terminiert ??

76

Orientierung



Beispiele

- Das ggT-Programm terminiert nur für Eingaben a,b mit: a>0 und b>0.
- Das Quadrier-Programm terminiert nur für Eingaben $a \ge 0$.
- while (true); terminiert nie.
- Programme ohne Schleifen terminieren immer!

Beispiele

- Das ggT-Programm terminiert nur für Eingaben a,b mit: a>0 und b>0.
- Das Quadrier-Programm terminiert nur für Eingaben $a \geq 0$.
- while (true); terminiert nie.
- Programme ohne Schleifen terminieren immer!

Lässt sich dieses Beispiel verallgemeinern ??