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quicksort [1 = []

quicksort (x:xs) =
quicksort below ++ [x] ++ quicksort above
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below = [y | y <- xs, y <= x]

General recursion: Quicksort

Example
quicksort :: Ord a => [a] -> [a]
quicksort []1 = []

quicksort (x:xs) =

quicksort below ++ [x] ++ quicksort above

where
below = [y | y <- xs, y <= x]
above = [y | y <- xs8, x < ¥]
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ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []
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-- 2nd param: partial ascending sublist (reversed)
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ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]
-— 1st param: input list
-- 2nd param: partial ascending sublist (reversed)

ups2 (x:xs) [1 = ups2 xs [x]
ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys)

| x >=y = ups2 xs (x:y:ys)




Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
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Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[31, [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2

O0rd a => [a] -> [a] -> [[al]

-— 1st param: input list

-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 =
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is accumulated in parameter and returned later

ups2 xs [x]

ups2 [] ys = [reverse ys] ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys) ups2 (x:xs) (y:ys)
| x >=y = ups2 xs (x:y:ys) | x >=y = ups2 xs (x:y:ys)
| otherwise = | otherwise = reverse (y:ys) : ups2 (x:xs) []
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ups :: Ord a => [a] -> [[al]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[all
-- 1st param: input list
-- 2nd param: partial ascending sublist (reversed)

ups2 (x:xs) [] = ups2 xs [x]
ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys)
| x >=y = ups2 xs (x:y:ys)
| otherwise = reverse (y:ys) : ups2 (x:xs) []
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import Data.List (sort)

Accumulating parameter
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ups :: Ord a => [a] - [[a]]
ups xs = ups2 xs []

aximal) ascending sublists in a list
[[31, [0,2,3], [2,4]]

-> [[al] 1 -> [[all

prop_ups_same :: (Int] —> Bool

ups2 :: Ord a => [a] -> [a] -> [[a]] ups2 :: Ord a => [a] -> [a] -> [[all
-- 1st param: input list -- 1st param: input list
-- 2nd param: partial ascending sublist (reversed) -- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [] = ups2 xs [x] ups2 (x:xs) [] = ups2 xs [x]
ups2 [] ys = [reverse ys] ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys) ups2 (x:xs) (y:ys)
| x>=vy = ups2 xs (x:y:ys) | x >=y = ups2 xs (x:y:ys)
| otherwise = reverse (y:ys) : ups2 (x:xs) [] | otherwise = reverse (y:ys) : ups2 (x:xs) []
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Mutual recursion Scoping by example
Example
x=y +5
even :: Int -> Bool y =x + 1 vwhere x = 7
even n = n == || n > 0 && odd (n-1) || odd (n+1) fy=y+x
odd :: Int -> Bool >f 3
oddn = n /=0&& (n>0 & even (n-1) || even (n+1))
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Scoping by example Scoping by example
x=y+5 x=y+5
y =X + 1 where x =7 y=x+ 1 vhere x =7
fy=y +x fy=y+x
> f 3 >f 3
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TUM gegen KIT!

Die Wettbewerbsaufgaben
der kommenden n Ubungsblatter
werden auch am KIT gestellt
(Programmierparadigmen, 5. Sem., Prof. Snelting)
und werden gemeinsam bewertet.

Wo studieren die besseren Programmierer?
TUM oder KIT?
Zeigen Sie, dass TUM TOP ist!
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5.1 Proving properties
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Aim Aim
Guarentee functional (I/O) properties of software Guarentee functional (I/O) properties of software
e Testing can guarantee properties for some inputs. e Testing can guarantee properties for some inputs.
e Mathematical proof can guarantee properties for all inputs. e Mathematical proof can guarantee properties for all inputs.
QuickCheck is good, proof is better
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5.1 Proving properties

What do we prove?

Equations el = e2
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Remember: [ ++ ys = ys Remember: [l ++ ys = ys
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=1: (2:[1 + [1) -— by def of ++ =1 : (2:00 ++ [1) -- by def of ++
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A more natural proof of [1,2] ++ [1 = [1] ++ [2]:

1:2:[]1 ++ []

=1 : (2:01 ++ [1) -— by def of ++
=1:2: ([0 ++ [1) -- by def of ++
=1:2:1[] -- by def of ++
1:00 ++ 2:[]

=1 : ([0 + 2:[1) -— by def of ++
=1:2: [ -- by def of ++

Proofs of el = e2 are often better presented
as two reductions to some expression e:

el = ... =

e
e2 = ... =e

C
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Fact If an equation does not contain any variables, it can be
proved by evaluating both sides separately and checking that the
result is identical.

C
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Properties of recursive functions are proved by induction

Induction on natural numbers: see Diskrete Strukturen

Induction on lists: here and now

(#

Structural induction on lists

To prove property P(xs) for all finite lists xs
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Induction step: Prove P(xs) implies P(x:xs)
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Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T

induction
hypothesis (IH)

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T
induction new variable x
hypothesis (IH)
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ups2 1)
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ups2 (x:xs) [ =
ups2 (x:xs) (y:ys
| x>=y =
| otherwise = reverse (y:ys) : ups2 (x:xs) []

ups :: Ord a == [a] —= [la]]
ups xs = ups2 xs 1]

prop_ups_same :: [Int] - Bool
prop_ups_same xs = concat(ups xs) == xs

prop_ups_asc :: [Int] —> Bool
prop_ups_asc xs =
and lasc us | us <= ups xs]

prop_ups_not_null :: [Int] -> Bool
prop_ups_not_null xs =
and [not(null us) | us <= ups xs]
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ys = lreverse ys]
= ups2 xs [x]

| 7] =

ups2 xs [x:y:ys)

uction on xs

++ zg = [] ++ (ys ++ zg)

-- by def of ++
= [1 ++ (ys ++ zs) -- by def of ++
Induction step:
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Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T

induction new variable x
hypothesis (IH)

One and the same fixed xs!

This is called structural induction on xs.
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Example: associativity of ++

8 ++ ys) ++ zs = xs ++ (ys ++ zs)

To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)
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Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T

induction new variable x
hypothesis (IH)

One and the same fixed xs!
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This is called structural induction on xs.
It is a special case of induction on the length of xs.
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Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
([1 ++ ys) ++ zs
= ys ++ zs -- by def of ++
= [1 ++ (ys ++ zs) -- by def of ++
Induction step:
IH: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)
((x:x8) ++ ys) ++ zs
= (x : (xs ++ ys)) ++ 28 -- by def of ++
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Base case:
To show: ([] ++ ys) ++ zs = [] ++ (ys ++ zs)
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Proof by structural induction on xs

-- by def of ++
-- by def of ++

= [] ++ (ys ++ zs)

((x:x8) ++ ys) ++ zs
= (x ¢ (xs ++ ys)) ++ zs -- by def of ++
=x : ((xs ++ ys) ++ zs) -- by def of ++
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Lemma P(xs)

Induction template

Proof by structural induction on xs

Base case:

To show: P([]1)
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Induction template Induction template
Lemma P (xs) Lemma P(xs)
Proof by structural induction on xs Proof by structural induction on xs
Base case: Base case:
To show: P([1) To show: P([])
Proof of P([]) Proof of P([])
Induction step: Induction step:
IH: P(xs)
To show: P(x:xs)
LIES (m)(=]

Induction template

Lemma P (xs)
Proof by structural induction on xs

Base case:
To show: P([])

Proof of P([])

Induction step:
IH: P(xs)
To show: P(x:xs)

Proof of P(x:xs) using IH

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
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Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs
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Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs

Base case:

To show: length ([] ++ ys) = length [] + length ys
length ([1 ++ ys)

= length ys -— by def of ++

length [] + length ys

= 0 + length ys -- by def of length
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Induction step:
IH: length(xs ++ ys) = length xs + length ys

Induction step:

IH: length(xs ++ ys) = length xs + length ys

To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)




(3@ os
Induction step: Induction step:
[H: length(xs ++ ys) = length xs + length ys [H: length(xs ++ ys) = length xs + length ys
To show: length((x:xs)++ys) = length(x:xs) + length ys To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys) length((x:xs) ++ ys)
= length(x : (xs ++ ys)) —-— by def of ++ = length(x : (xs ++ ys)) -— by def of ++
= 1 + length(xs ++ ys) -- by def of length
= 1 + length xs + length ys -- by IH
length(x:xs) + length ys
Ly IS,

Induction step:

IH: length(xs ++ ys) = length xs + length ys

To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)

length(x : (xs ++ ys))

1 + length(xs ++ ys)

1 + length xs + length ys

length(x:xs) + length ys

= 1 + length xs + length ys

-- by def of ++
-- by def of length
-- by IH

-- by def of length

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs




Example: reverse of ++ Example: reverse of ++
Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs
Proof by structural induction on xs Proof by structural induction on xs
Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

= reverse ys -- by def of ++
reverse ys ++ reverse []
= reverse ys ++ [] -— by def of reverse
oo =)&)
Example: reverse of ++ Example: reverse of ++
Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs
Proof by structural induction on xs Proof by structural induction on xs
Base case: Base case:
To show: reverse ([] ++ ys) = reverse ys ++ reverse [] To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys) reverse ([] ++ ys)
= reverse ys —— by def of ++ = reverse ys -- by def of ++
reverse ys ++ reverse [] reverse ys ++ reverse []
= reverse ys ++ [] —— by def of reverse = reverse ys ++ [] -- by def of reverse
= reverse ys -— by = reverse ys -- by Lemma app_Nil2




Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs
Base case:
To show: reverse ([] ++ ys) =
reverse ([] ++ ys)

= reverse ys

reverse ys ++ reverse []
= reverse ys ++ 0]

= reverse ys

reverse ys ++ reverse []
—— by def of ++

—— by def of reverse
-- by Lemma app_Nil2

Lemma app_Nil2: xs ++ [] = xs
Proof exercise

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

Induction step:

IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (xs ++ ys)) -- by def of ++




Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)
= reverse(x : (Xs ++ ys))
= reverse(xs ++ ys) ++ [x]

-- by def of ++
-- by def of reverse

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = ys

reverse ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (Xs ++ ys))

= reverse(xs ++ ys) ++ [x]

= (reverse ys ++ reverse xs) ++ [x]
reverse ys ++ (reverse xs ++ [x])

-- by def of ++

-- by def of reverse
-- by IH

-- by Lemma app_assoc

reverse ys ++ reverse(x:xs)

= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH

reverse ys ++ reverse(x:xs)

= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse
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Proof heuristic
Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs) e Try QuickCheck
reverse((x:xs) ++ ys)
= reverse(x : (Xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH
= reverse ys ++ (reverse xs ++ [x]) -- by Lemma app assoc
reverse ys ++ reverse(x:xs)
= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse
(=)@ o

Proof heuristic

e Try QuickCheck

e Try to evaluate both sides to common term
e Try induction

e Base case: reduce both sides to a common term
using function defs and lemmas

e Try QuickCheck

Proof heuristic

e Try to evaluate both sides to common term

e Try induction

e Base case: reduce both sides to a common term

using function defs and lemmas

e Induction step: reduce both sides to a common term

using function defs, IH and lemmas
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Proof heuristic Proof heuristic
e Try QuickCheck e Try QuickCheck
e Try to evaluate both sides to common term e Try to evaluate both sides to common term
e Try induction e Try induction
e Base case: reduce both sides to a common term e Base case: reduce both sides to a common term
using function defs and lemmas using function defs and lemmas
e Induction step: reduce both sides to a common term e Induction step: reduce both sides to a common term
using function defs, IH and lemmas using function defs, IH and lemmas
e |f base case or induction step fails: e If base case or induction step fails:
conjecture, prove and use new lemmas conjecture, prove and use new lemmas
CEN LIIEY

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs

Two further tricks

e Proof by cases

e Generalization
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Example: proof by cases Example: proof by cases
rem x [J = [] rem x [J = []
rem x (y:ys) | x== = rem X ys rem x (y:ys) | x== = rem X ys
| otherwise = y : rem X ys | otherwise = y : rem X ys
Lemma rem z (xs ++ ys) = rem z xs ++ rem z ys
majer x 0 = 0 mje em x o= 0
" rem x (y:ys) | x==y = rem X ys T rem x (y:ys) | x==y = rem X ys
| otherwise = y : rem X ys | otherwise = y : rem X ys

Induction step:

IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys

To show: rem z ((x:xs)++ys) =

rem z (x:xs) ++ rem z ys

Induction step:

IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys

To show: rem z ((x:xs)++ys)

Proof by cases
Case z == x:

rem z ((x:xs) ++ ys)

= rem z (xs ++ ys)

= rem z Xs ++ rem z ys

= rem z (x:Xs) ++ rem z ys

-- by def of ++ and rem
-- by IH




mjajem x O = [
" rem x (y:ys) | x==y rem X ys
| otherwise = y : rem X ys

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (X:Xs) ++ rem z ys
Proof by cases
Case z == x:
rem z ((x:xs) ++ ys)

= rem z (xs ++ ys) -- by def of ++ and rem

mjajem x [ = [
T rem x (y:ys) | x==y rem x ys
| otherwise = y : rem X ys

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (X:xXs) ++ rem z ys
Proof by cases
Case z == x:
rem z ((x:xs) ++ ys)

= rem z (xs ++ ys) -- by def of ++ and rem

= rem z Xs ++ rem z ys -— by IH = rem Z XS ++ rem z ys -- by IH
rem z (x:xs) ++ rem z ys
me emx [0 = [ majenx [0 = [I
" rem x (y:ys) | x==y = rem X ys T rem x (y:ys) | x==y = rem X ys
| otherwise = y : rem X ys | otherwise = y : rem X ys

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (Xx:Xs) ++ rem z ys
Proof by cases

Case z == x:

rem z ((x:xs) ++ ys)

= rem z (xs ++ ys)
rem z Xs ++ rem z ys
rem z (x:xs) ++ rem z ys
= rem z Xs ++ rem z ys

—— by def of ++ and rem
-- by IH

—— by def of rem

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (x:xs) ++ rem z ys
Proof by cases

Case z == x:

rem z ((x:xs) ++ ys)

= rem z (xs ++ ys)
rem zZ Xs ++ rem z ys
rem z (x:xs) ++ rem z ys
= rem z Xs ++ rem z ys

-- by def of ++ and rem
-- by IH

-- by def of rem

Case z /= x:

rem z ((x:xs) ++ ys)

=x : rem z (Xs ++ ys) -— by def of ++ and rem
=x : (rem z xs ++ rem z ys) -- by IH

rem z (x:xs) ++ rem z ys




Proof by cases

Works just as well for if-then-else,

Proof by cases

Works just as well for if-then-else,

Proof by cases

Works just as well for if-then-else, for example

rem x [1 = []
rem x (y:ys) = 1if x == y then rem x ys
else y : rem x ys

Inefficiency of reverse

reverse [1,2,3]
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reverse [1,2,3]

Inefficiency of reverse




