Script generated by TTT

Title:

Date:

Duration:

Pages:

C
(#

Example

quicksort ::
quicksort []

Nipkow: Info2 (31.10.2014)
Fri Oct 31 07:29:47 GMT 2014
86:07 min

136

General recursion: Quicksort

Ord a => [a] -> [a]

= [

Example

quicksort ::
quicksort []

General recursion: Quicksort

Ord a => [a] -> [a]

= [

Example

quicksort ::

General recursion: Quicksort

Ord a => [a] -> [a]

(& LGS
General recursion: Quicksort General recursion: Quicksort
Example Example
quicksort :: Ord a => [a] -> [a] quicksort :: Ord a => [a] -> [a]
quicksort [1 = [] quicksort [] = []
quicksort (x:xs) =
quicksort below ++ [x] ++ quicksort above
=)@ =]
General recursion: Quicksort General recursion: Quicksort
Example Example
quicksort :: Ord a => [a] -> [a] quicksort :: Ord a => [a] -> [a]
quicksort [1 = [] quicksort [] = []

quicksort (x:xs) =
quicksort below ++ [x] ++ quicksort above
where
below = [y | y <- xs, y <= x]

quicksort (x:xs) =
quicksort below ++ [x] ++ quicksort above
where
below = [y | y <- xs, y <= x]
above = [y | y <- x8, x <]

=&
General recursion: Quicksort
Example
quicksort :: Ord a => [a] -> [a]
quicksort [1 = []

quicksort (x:xs) =
quicksort below ++ [x] ++ quicksort above
where
below = [y | y <- xs, y <= x]

General recursion: Quicksort

Example
quicksort :: Ord a => [a] -> [a]
quicksort []1 = []

quicksort (x:xs) =

quicksort below ++ [x] ++ quicksort above

where
below = [y | y <- xs, y <= x]
above = [y | y <- xs8, x < ¥]

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3],

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[31, [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]
-— 1st param: input list

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]l
-— 18t param: input list
-— 2nd param: partial ascending sublist

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[31, [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]
-— 1st param: input list
-- 2nd param: partial ascending sublist (reversed)

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]

-— 18t param: input list

-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 = ups2 xs [x]

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]

-— 1st param: input list

-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 = ups2 xs [x]

ups2 [] ys =

C
(#

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]

-— 18t param: input list

-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 = ups2 xs [x]

ups2 [] ys [reverse ys]

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[31, [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]

-— 1st param: input list

-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 = ups2 xs [x]

ups2 [] ys [reverse ys]

ups2 (x:xs) (y:ys)

C
(#

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]
-— 18t param: input list
-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 = ups2 xs [x]
ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys)
| x >=y = ups2 Xxs

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[a]]
-— 1st param: input list
-- 2nd param: partial ascending sublist (reversed)

ups2 (x:xs) [1 = ups2 xs [x]
ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys)

| x >=y = ups2 xs (x:y:ys)

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups?2 Ord a => [a] -> [a] -> [[a]]

-— 18t param: input list

-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 = ups2 xs [x]

Idea: Result

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[31, [0,2,3], [2,4]]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

ups2

O0rd a => [a] -> [a] -> [[al]

-— 1st param: input list

-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [1 =

Accumulating parameter

is accumulated in parameter and returned later

ups2 xs [x]

ups2 [] ys = [reverse ys] ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys) ups2 (x:xs) (y:ys)
| x >=y = ups2 xs (x:y:ys) | x >=y = ups2 xs (x:y:ys)
| otherwise = | otherwise = reverse (y:ys) : ups2 (x:xs) []
#® Adobe Reader File Edit View Window Help S @ D <>y 8 = A4) & Fiod4e Q =
Q‘ E @3} I - || slides.pdf :
uu —%J-u{p_Jerr— ‘ AR ZFeB e ‘ * (602 of 1089) ‘ | [d = Tools | Fill &Sign | Comment
@ ‘ Bookmarks [«]
C= 2
: [F Organisatorische
4 s Accumulating parameter
P Functional
-T-Laeg{:er:mmg' Idea: Result is accumulated in parameter and returned later
[¥ Basic Haskell Example: list of all (maximal) ascending sublists in a list
7 Lists ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]
How can we quickCheck the result of ups? I Proofs P

[P Higher-Order
Functions

ups :: Ord a => [a] -> [[al]
ups xs = ups2 xs []

ups2 :: Ord a => [a] -> [a] -> [[all
-- 1st param: input list
-- 2nd param: partial ascending sublist (reversed)

ups2 (x:xs) [] = ups2 xs [x]
ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys)
| x >=y = ups2 xs (x:y:ys)
| otherwise = reverse (y:ys) : ups2 (x:xs) []

Terminal Shell Edit View Window Help S @@ D >y =) = Frins:47 Q =

= 8 Terminal Shell Edit View Window Help S @ O <> 8 =) @ 0847 Q =
@@ | % slides.pdf @@J \ %] slides.pdf
= = A e - . — A - - H

= .| Code — bash — 80x24 2 39) HZ‘ = Tools | Fill & Sign Comment .| Code — more — 80x24 ¥ 3g) Tools | Fill & Sign | Comment
exm-gist/fonts/typel/public/ans fonts/cn/cnssbxld. pibs</usr/local/tex live/2013/ B LagnipkowliCode nipkows ls L]

texmi-dist/fonts/typel/public/amsfonts/cn/cnssi10. pb></usr/local/tex Live/ 2613/ Ack Pictures.hs Vi.hsw edit.lhs prines.hs

texmi-dist/fonts/typel/public/ans onts/cn/cnssil2. pibs</usr/local/tex Live/ 2613/ ChatServer.hs Pictures.hs~ V2.hs even_odd.hs search.hs

texmi-dist/fonts/typel/public/amsfonts/cn/cnssid. pho</usr/local/tex Live/ 2813/t ExprParsers.hs §.hs Vi.hs ggt.hs skew.hs

exm-gist/fonts/typel/public/ans fonts/cn/cnsy18. prbm</usr/ local/tex Live/2013/te Final Set.hs ack.hs hangman. hs test.hs

xmi-gist/fonts/typel/public/ansfonts/cn/cmsy8. pfbo</usr/ local/tex ive/2813/texm

f-dist/fonts/typel/public/amsfonts/cn/casyd. pfb=</usr/ local/tex ive/2013/ texmi—
dist/fonts/typel/public/amsfonts/cn/cntt1d. pfbm</usr/local/texlive/2813/ texnt-d
ist/fonts/typel/public/ams onts/cn/cntt12, pib=</usr/ local/texLive/2013/ texni-di
st/fonts/typel/public/ansfonts/cn/enttl. pfbm</usr/local/tex ive/2813/ texnf-dist
ffonts/typel/public/ams fonts/symbols/msbml. prb>

Dutput written on slides.pd? (1896 pages, 1564399 bytes).

Transcript written on slides.log.

lapnipkowl:Slides nipkows cd ../Code/

1apnipkowl:Code nipkows s

Ack Pictures.hs Vl.hs~ edit. lhs primes.hs
ChatServer.hs Pictures.hs~ V2.hs even_odd.hs search.hs
ExprParsers.hs 5.hs va.hs ggt.hs skew. his

Final Set.hs ack.hs hangman. hs test.hs

Form.hs SetByTree.hs append2.hs icp.hs ups.hs
Huffman-test.hs SkewHeap.hs calc.hs minimax. hs valtat.hs
Hufman. hs Tree.hs countWords.hs minimax2.hs weet.hs
Parser.hs V1.hs cp- pingPang. hs
lapnipkowl:Code nipkows more ups.hs _

Form.hs SetByTree.hs append2.hs icp.hs ups.hs
Huffman-test.hs SkewHeap.hs calc.hs minimax. hs valtat.hs
Huffman. hs Tree.hs countWords.hs minimax2.hs wGet.hs
Parser.hs Vi.hs v pingPong. hs
lapnipkowl:Code nipkows more ups.hs

e e Accumulating parameter

import Data.List (sort)

Accumulating parameter

ated in parameter and returned later wps? t: Ord 2 = (] —> fal - (lal] ated in parameter and returned later

ups2 (1 ys = lreverse ys|
2 Gexs) 11 2xs bx] - . S -
w2 Gees) (yrymy aximal) ascending sublists in a list
= 2 xs (xiyys) 1l
| hinariise < rovares (yever™) upsa xsxs) 1) = [[3], [0,2,3], [2,4]]

ups :: Ord a => [a] - [[a]]
ups xs = ups2 xs []

aximal) ascending sublists in a list
[[31, [0,2,3], [2,4]]

-> [[al] 1 -> [[all

prop_ups_same :: (Int] —> Bool

ups2 :: Ord a => [a] -> [a] -> [[a]] ups2 :: Ord a => [a] -> [a] -> [[all
-- 1st param: input list -- 1st param: input list
-- 2nd param: partial ascending sublist (reversed) -- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) [] = ups2 xs [x] ups2 (x:xs) [] = ups2 xs [x]
ups2 [] ys = [reverse ys] ups2 [] ys = [reverse ys]
ups2 (x:xs) (y:ys) ups2 (x:xs) (y:ys)
| x>=vy = ups2 xs (x:y:ys) | x >=y = ups2 xs (x:y:ys)
| otherwise = reverse (y:ys) : ups2 (x:xs) [] | otherwise = reverse (y:ys) : ups2 (x:xs) []
5.04 x 3.78 in 5.04 x 3.78in

CICY CIEY
Convention

How can we quickCheck the result of ups?

|dentifiers of list type end in ‘s’

XS, ys, Zs, ...

Binding occurrence

(=)@ o
Mutual recursion Scoping by example
Example
x=y +5
even :: Int -> Bool y =x + 1 vwhere x = 7
even n = n == || n > 0 && odd (n-1) || odd (n+1) fy=y+x
odd :: Int -> Bool >f 3
oddn = n /=0&& (n>0 & even (n-1) || even (n+1))
(=)@ o
Scoping by example Scoping by example
x=y+5 x=y+5
y =X + 1 where x =7 y=x+ 1 vhere x =7
fy=y +x fy=y+x
> f 3 >f 3
16 16

+ 5

Ho< M
I
I =<

y+X

> f
16

w

Binding occurrence
Bound occurrence
Scope of binding

+ 1 where x

Scoping by example

Scoping by example

x=y +5

y =X+ 1 wvhere x =7
fy=y+x

>f 3

16

Binding occurrence
Bound occurrence
Scope of binding

+ 5

ot M
I
I =<

y + X

> f
16

w

Binding occurrence
Bound occurrence
Scope of binding

+ 1 where x

Scoping by example

Scoping by example

x=y+5

y =x + 1 vhere x =7
fy=y+x

>f 3

16

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

+ 5
+ 1 where x =7
y+X

o< M
I
([S

> f
16

w

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

x=y +5

y=x+ 1 vhere x =7
fy=y+x

>f 3

16

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

Summary:
e Order of definitions is irrelevant

e Parameters and where-defs are local to each equation

Scoping by example

x=y+5

y=x+ 1 vhere x =7
fy=y+x

>f 3

16

Binding occurrence
Bound occurrence
Scope of binding

D O
Scoping by example
TUM gegen KIT!
Summary:
e Order of definitions is irrelevant
e Parameters and where-defs are local to each equation
&, (RIS

TUM gegen KIT!

Die Wettbewerbsaufgaben
der kommenden n Ubungsblatter
werden auch am KIT gestellt

TUM gegen KIT!

Die Wettbewerbsaufgaben
der kommenden n Ubungsblitter
werden auch am KIT gestellt
(Programmierparadigmen, 5. Sem., Prof. Snelting)

TUM gegen KIT!

Die Wettbewerbsaufgaben
der kommenden n Ubungsblatter
werden auch am KIT gestellt
(Programmierparadigmen, 5. Sem., Prof. Snelting)
und werden gemeinsam bewertet.

Wo studieren die besseren Programmierer?

TUM gegen KIT!

Die Wettbewerbsaufgaben
der kommenden n Ubungsblitter
werden auch am KIT gestellt
(Programmierparadigmen, 5. Sem., Prof. Snelting)
und werden gemeinsam bewertet.

Wo studieren die besseren Programmierer?
TUM oder KIT?

TUM gegen KIT!

Die Wettbewerbsaufgaben
der kommenden n Ubungsblatter
werden auch am KIT gestellt
(Programmierparadigmen, 5. Sem., Prof. Snelting)
und werden gemeinsam bewertet.

Wo studieren die besseren Programmierer?
TUM oder KIT?
Zeigen Sie, dass TUM TOP ist!

5. Proofs

5.1 Proving properties

(@] |
Aim Aim
Guarentee functional (I/O) properties of software Guarentee functional (I/O) properties of software
e Testing can guarantee properties for some inputs. e Testing can guarantee properties for some inputs.
e Mathematical proof can guarantee properties for all inputs. e Mathematical proof can guarantee properties for all inputs.
QuickCheck is good, proof is better
(@] |

5.1 Proving properties

What do we prove?

Equations el = e2

A first, simple example

Remember: [J ++ ys
(x:x8) ++ ys

ys
x @ (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

A first, simple example

Remember: [0 ++ ys
(x:x8) ++ ys

NE
x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:
1:2:01 ++ [

A first, simple example

Remember: [J ++ ys
(x:x8) ++ ys

ys
x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2: [0 ++ [J
=1 : (2:0[0 ++ [

A first, simple example

Remember: [0 ++ ys
(x:x8) ++ ys

NE
x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2: 01 ++ [J
=1 : (2:[1 ++ [D -— by def of ++

(m]@) _ (m]«] _
A first, simple example A first, simple example
Remember: [++ ys = ys Remember: [l ++ ys = ys
(x:xs) ++ ys = x @ (xs ++ ys) (x:xs) ++ ys = x : (xs ++ ys)
Proof of [1,2] ++ [] = [1] ++ [2]: Proof of [1,2] ++ [] = [1] ++ [2]:
1:2:[01 ++ [J 1:2: 01 ++ [J
=1 : (2:[0 + [-— by def of ++ =1 : (2:[1 ++ [D -— by def of ++
=1:2: ([0 + [0) -- by def of ++ =1:2: ([0 ++ 1) -- by def of ++
=1:2:[] -- by def of ++
(m]@) _ (m]«] _
A first, simple example A first, simple example
Remember: [++ ys = ys Remember: [l ++ ys = ys
(x:xs) ++ ys = x @ (xs ++ ys) (x:xs) ++ ys = x : (xs ++ ys)
Proof of [1,2] ++ [] = [1] ++ [2]: Proof of [1,2] ++ [] = [1] ++ [2]:
1:2:[01 ++ [J 1:2: 01 ++ [J
=1 : (2:[0 + [-— by def of ++ =1 : (2:[1 ++ [D -— by def of ++
=1:2: ([0 + [0) -- by def of ++ =1:2: ([0 ++ 1) -- by def of ++
=1:2:1[] -- by def of ++ =1:2:[] -- by def of ++
=1 : ([0 ++ 2:[) -- by def of ++ =1 : ([0 ++ 2:[D) -- by def of ++
= 1:[1 ++ 2:[1] -- by def of ++

Observation: first used equations from left to right (ok),

=@ | o _
A first, simple example A first, simple example
Remember: [++ ys = ys Remember: [l ++ ys = ys
(x:x8) ++ ys = x : (X8 ++ ys) (x:x8) ++ ys = x : (X8 ++ ys)
Proof of [1,2] ++ [] = [1] ++ [2]: Proof of [1,2] ++ [] = [1] ++ [2]:
1:2:[01 ++ [J 1:2: 01 ++ [J
=1 : (2:[0 + [-— by def of ++ =1 : (2:[1 ++ [D -— by def of ++
=1:2: ([0 + [0) -- by def of ++ =1:2: ([0 ++ 1) -- by def of ++
=1:2:1[] -- by def of ++ =1:2:[] -- by def of ++
=1 : ([0 ++ 2:[) -- by def of ++ =1 : ([0 ++ 2:[1) -- by def of ++
= 1:[1 ++ 2:[] -— by def of ++ = 1:[1 ++ 2:[1] -- by def of ++
Observation: first used equations from left to right (ok),
=@ o
A more natural proof of [1,2] ++ [1 = [1] ++ [2]: A more natural proof of [1,2] ++ [] = [1] ++ [2]:
1:2:[1 ++ [1] 1:2:[1 ++ []
=1: (2:[1 + [1) -— by def of ++ =1 : (2:00 ++ [1) -- by def of ++
=1:2: ([0 ++ [1) -- by def of ++ =1 :2: ([0 ++ [0) -- by def of ++
=1:2: 1] -— by def of ++ =1:2:1] -- by def of ++
1:[] ++ 2: 0] 1:[] ++ 2:[]
=1 : ([] ++ 2:[1) -— by def of ++ =1 : ([0 ++ 2:[1) -- by def of ++
=1 :2:[] -- by def of ++

C
g

A more natural proof of [1,2] ++ [1 = [1] ++ [2]:

1:2:[]1 ++ []

=1 : (2:01 ++ [1) -— by def of ++
=1:2: ([0 ++ [1) -- by def of ++
=1:2:1[] -- by def of ++
1:00 ++ 2:[]

=1 : ([0 + 2:[1) -— by def of ++
=1:2: [-- by def of ++

Proofs of el = e2 are often better presented
as two reductions to some expression e:

el = ... =

e
e2 = ... =e

C
[»

Fact If an equation does not contain any variables, it can be
proved by evaluating both sides separately and checking that the
result is identical.

C
g

Properties of recursive functions are proved by induction

Induction on natural numbers: see Diskrete Strukturen

Induction on lists: here and now

(#

Structural induction on lists

To prove property P(xs) for all finite lists xs

C
»

Structural induction on lists

To prove property P(xs) for all finite lists xs

Base case: Prove P([]) and

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

"

induction
hypothesis (IH)

C
»

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T

induction
hypothesis (IH)

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T
induction new variable x
hypothesis (IH)

Terminal Shell Edit View Window Help

O @ @D <y T E i Q=

ups2 1)

'

ups2 (x:xs) [=
ups2 (x:xs) (y:ys
| x>=y =
| otherwise = reverse (y:ys) : ups2 (x:xs) []

ups :: Ord a == [a] —= [la]]
ups xs = ups2 xs 1]

prop_ups_same :: [Int] - Bool
prop_ups_same xs = concat(ups xs) == xs

prop_ups_asc :: [Int] —> Bool
prop_ups_asc xs =
and lasc us | us <= ups xs]

prop_ups_not_null :: [Int] -> Bool
prop_ups_not_null xs =
and [not(null us) | us <= ups xs]
1apnipkowl:Code nipkows cd ..
lapnipkowl:1415 nipkows 11 slides.pdf
—re-r—r—@ 1 nipkow staff 1561243 27 Oct 17:39 slides.pdf
apnipkow1:1415 nipkows mv Slides/slides.pdf .
apnipkow1:1415 nipkows _

% slides.pdf

(11415 — bash — 80x24 " 39) |
B

ys = lreverse ys]
= ups2 xs [x]

| 7] =

ups2 xs [x:y:ys)

uction on xs

++ zg = [] ++ (ys ++ zg)

-- by def of ++
= [1 ++ (ys ++ zs) -- by def of ++
Induction step:

5.04 x 3.78 in

=&

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T

induction new variable x
hypothesis (IH)

One and the same fixed xs!

This is called structural induction on xs.

ill & Sign

Example: associativity of ++

8 ++ ys) ++ zs = xs ++ (ys ++ zs)

To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

Comment

=&

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T

induction new variable x
hypothesis (IH)

One and the same fixed xs!

=&

Structural induction on lists

To prove property P(xs) for all finite lists xs

Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)
T T
induction new variable x
hypothesis (IH)

One and the same fixed xsl!

This is called structural induction on xs.
It is a special case of induction on the length of xs.

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([] ++ ys) ++ zs = [] ++ (ys ++ zs)

([0 ++ ys) ++ zs

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:

To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)

([1 ++ ys) ++ zs

= ys ++ zs -- by def of ++

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)

([0 ++ ys) ++ zs

= ys ++ zZs -- by def of ++
[++ (ys ++ zs) -- by def of ++

Example: associativity of ++
Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:

To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
([1 ++ ys) ++ zs
= ys ++ zs -- by def of ++
= [1 ++ (ys ++ zs) -- by def of ++

Induction step:

LS|

o Example: associativity of ++
Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([] ++ ys) ++ zs = [] ++ (ys ++ zs)

([0 ++ ys) ++ zs

= ys ++ zZs -- by def of ++
[++ (ys ++ zs) -- by def of ++

Induction step:
IH: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)

([1 ++ ys) ++ zs

= ys ++ zs -- by def of ++

= [1 ++ (ys ++ zs) -- by def of ++
Induction step:
IH: ([++ ys) ++ zs = []1 ++ (ys ++ zs)
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

LS|

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
([0 ++ ys) ++ zs
= ys ++ zZs -- by def of ++
[++ (ys ++ zs) -- by def of ++

Induction step:
IH: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
To show: ((x:xs) ++ ys) ++ zs = (x:xs8) ++ (ys ++ zs)

((x:x8) ++ ys) ++ zs

C
g

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
([1 ++ ys) ++ zs
= ys ++ zs -- by def of ++
= [1 ++ (ys ++ zs) -- by def of ++
Induction step:
IH: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)
((x:x8) ++ ys) ++ zs
= (x : (xs ++ ys)) ++ 28 -- by def of ++

E

Base case:
To show: ([] ++ ys) ++ zs = [] ++ (ys ++ zs)
([0 ++ ys) ++ zs

= ys ++ zs
[0 ++ (ys ++ zs)

Induction step:
[H: ([J ++ ys) ++ zs
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

-- by def of ++
-- by def of ++

= [] ++ (ys ++ zs)

((x:x8) ++ ys) ++ zs
= (x ¢ (xs ++ ys)) ++ zs -- by def of ++
=x : ((xs ++ ys) ++ zs) -- by def of ++

C
g

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
([1 ++ ys) ++ zs
= ys ++ zs -- by def of ++
[0 ++ (ys ++ zs) -- by def of ++

Induction step:
IH: ([1 ++ ys) ++ zs = [] ++ (ys ++ zs)
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

((x:x8) ++ ys) ++ zs

= (x : (xs ++ ys)) ++ 28 -- by def of ++
=x : ((xs ++ ys) ++ zs) -- by def of ++
=x : (xs ++ (ys ++ zs)) -- by IH

(x:x8) ++ (ys ++ zs)

E

Lemma P(xs)

Induction template

Proof by structural induction on xs

Base case:

To show: P([]1)

LIS =)
Induction template Induction template
Lemma P (xs) Lemma P(xs)
Proof by structural induction on xs Proof by structural induction on xs
Base case: Base case:
To show: P([1) To show: P([])
Proof of P([]) Proof of P([])
Induction step: Induction step:
IH: P(xs)
To show: P(x:xs)
LIES (m)(=]

Induction template

Lemma P (xs)
Proof by structural induction on xs

Base case:
To show: P([])

Proof of P([])

Induction step:
IH: P(xs)
To show: P(x:xs)

Proof of P(x:xs) using IH

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys

C
(#

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs

Base case:

To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs

Base case:

To show: length ([] ++ ys) = length [] + length ys
length ([1 ++ ys)

= length ys -— by def of ++

length [] + length ys

= 0 + length ys -- by def of length

C
(#

Induction step:
IH: length(xs ++ ys) = length xs + length ys

Induction step:

IH: length(xs ++ ys) = length xs + length ys

To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)

(3@ os
Induction step: Induction step:
[H: length(xs ++ ys) = length xs + length ys [H: length(xs ++ ys) = length xs + length ys
To show: length((x:xs)++ys) = length(x:xs) + length ys To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys) length((x:xs) ++ ys)
= length(x : (xs ++ ys)) —-— by def of ++ = length(x : (xs ++ ys)) -— by def of ++
= 1 + length(xs ++ ys) -- by def of length
= 1 + length xs + length ys -- by IH
length(x:xs) + length ys
Ly IS,

Induction step:

IH: length(xs ++ ys) = length xs + length ys

To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)

length(x : (xs ++ ys))

1 + length(xs ++ ys)

1 + length xs + length ys

length(x:xs) + length ys

= 1 + length xs + length ys

-- by def of ++
-- by def of length
-- by IH

-- by def of length

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs

Example: reverse of ++ Example: reverse of ++
Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs
Proof by structural induction on xs Proof by structural induction on xs
Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

= reverse ys -- by def of ++
reverse ys ++ reverse []
= reverse ys ++ [] -— by def of reverse
oo =)&)
Example: reverse of ++ Example: reverse of ++
Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs
Proof by structural induction on xs Proof by structural induction on xs
Base case: Base case:
To show: reverse ([] ++ ys) = reverse ys ++ reverse [] To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys) reverse ([] ++ ys)
= reverse ys —— by def of ++ = reverse ys -- by def of ++
reverse ys ++ reverse [] reverse ys ++ reverse []
= reverse ys ++ [] —— by def of reverse = reverse ys ++ [] -- by def of reverse
= reverse ys -— by = reverse ys -- by Lemma app_Nil2

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs
Base case:
To show: reverse ([] ++ ys) =
reverse ([] ++ ys)

= reverse ys

reverse ys ++ reverse []
= reverse ys ++ 0]

= reverse ys

reverse ys ++ reverse []
—— by def of ++

—— by def of reverse
-- by Lemma app_Nil2

Lemma app_Nil2: xs ++ [] = xs
Proof exercise

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

Induction step:

IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (xs ++ ys)) -- by def of ++

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)
= reverse(x : (Xs ++ ys))
= reverse(xs ++ ys) ++ [x]

-- by def of ++
-- by def of reverse

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = ys

reverse ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (Xs ++ ys))

= reverse(xs ++ ys) ++ [x]

= (reverse ys ++ reverse xs) ++ [x]
reverse ys ++ (reverse xs ++ [x])

-- by def of ++

-- by def of reverse
-- by IH

-- by Lemma app_assoc

reverse ys ++ reverse(x:xs)

= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse

Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse xs

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH

reverse ys ++ reverse(x:xs)

= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse

|| =hEN
Proof heuristic
Induction step:
IH: reverse(xs ++ ys) = reverse ys ++ reverse Xs
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs) e Try QuickCheck
reverse((x:xs) ++ ys)
= reverse(x : (Xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH
= reverse ys ++ (reverse xs ++ [x]) -- by Lemma app assoc
reverse ys ++ reverse(x:xs)
= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse
(=)@ o

Proof heuristic

e Try QuickCheck

e Try to evaluate both sides to common term
e Try induction

e Base case: reduce both sides to a common term
using function defs and lemmas

e Try QuickCheck

Proof heuristic

e Try to evaluate both sides to common term

e Try induction

e Base case: reduce both sides to a common term

using function defs and lemmas

e Induction step: reduce both sides to a common term

using function defs, IH and lemmas

LES EHES
Proof heuristic Proof heuristic
e Try QuickCheck e Try QuickCheck
e Try to evaluate both sides to common term e Try to evaluate both sides to common term
e Try induction e Try induction
e Base case: reduce both sides to a common term e Base case: reduce both sides to a common term
using function defs and lemmas using function defs and lemmas
e Induction step: reduce both sides to a common term e Induction step: reduce both sides to a common term
using function defs, IH and lemmas using function defs, IH and lemmas
e |f base case or induction step fails: e If base case or induction step fails:
conjecture, prove and use new lemmas conjecture, prove and use new lemmas
CEN LIIEY

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xxs

Two further tricks

e Proof by cases

e Generalization

(m]@) |
Example: proof by cases Example: proof by cases
rem x [J = [] rem x [J = []
rem x (y:ys) | x== = rem X ys rem x (y:ys) | x== = rem X ys
| otherwise = y : rem X ys | otherwise = y : rem X ys
Lemma rem z (xs ++ ys) = rem z xs ++ rem z ys
majer x 0 = 0 mje em x o= 0
" rem x (y:ys) | x==y = rem X ys T rem x (y:ys) | x==y = rem X ys
| otherwise = y : rem X ys | otherwise = y : rem X ys

Induction step:

IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys

To show: rem z ((x:xs)++ys) =

rem z (x:xs) ++ rem z ys

Induction step:

IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys

To show: rem z ((x:xs)++ys)

Proof by cases
Case z == x:

rem z ((x:xs) ++ ys)

= rem z (xs ++ ys)

= rem z Xs ++ rem z ys

= rem z (x:Xs) ++ rem z ys

-- by def of ++ and rem
-- by IH

mjajem x O = [
" rem x (y:ys) | x==y rem X ys
| otherwise = y : rem X ys

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (X:Xs) ++ rem z ys
Proof by cases
Case z == x:
rem z ((x:xs) ++ ys)

= rem z (xs ++ ys) -- by def of ++ and rem

mjajem x [= [
T rem x (y:ys) | x==y rem x ys
| otherwise = y : rem X ys

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (X:xXs) ++ rem z ys
Proof by cases
Case z == x:
rem z ((x:xs) ++ ys)

= rem z (xs ++ ys) -- by def of ++ and rem

= rem z Xs ++ rem z ys -— by IH = rem Z XS ++ rem z ys -- by IH
rem z (x:xs) ++ rem z ys
me emx [0 = [majenx [0 = [I
" rem x (y:ys) | x==y = rem X ys T rem x (y:ys) | x==y = rem X ys
| otherwise = y : rem X ys | otherwise = y : rem X ys

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (Xx:Xs) ++ rem z ys
Proof by cases

Case z == x:

rem z ((x:xs) ++ ys)

= rem z (xs ++ ys)
rem z Xs ++ rem z ys
rem z (x:xs) ++ rem z ys
= rem z Xs ++ rem z ys

—— by def of ++ and rem
-- by IH

—— by def of rem

Induction step:
IH: rem z (xs ++ ys) = rem z Xs ++ rem z ys
To show: rem z ((x:xs)++ys) = rem z (x:xs) ++ rem z ys
Proof by cases

Case z == x:

rem z ((x:xs) ++ ys)

= rem z (xs ++ ys)
rem zZ Xs ++ rem z ys
rem z (x:xs) ++ rem z ys
= rem z Xs ++ rem z ys

-- by def of ++ and rem
-- by IH

-- by def of rem

Case z /= x:

rem z ((x:xs) ++ ys)

=x : rem z (Xs ++ ys) -— by def of ++ and rem
=x : (rem z xs ++ rem z ys) -- by IH

rem z (x:xs) ++ rem z ys

Proof by cases

Works just as well for if-then-else,

Proof by cases

Works just as well for if-then-else,

Proof by cases

Works just as well for if-then-else, for example

rem x [1 = []
rem x (y:ys) = 1if x == y then rem x ys
else y : rem x ys

Inefficiency of reverse

reverse [1,2,3]

3

O @m @D <>y T) @& Fisss Q

o=

[

(#

reverse [1,2,3]

Inefficiency of reverse

