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12. Lazy evaluation

Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated.
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Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated. The evaluation strategy is called

lazy evaluation (, verzogerte Auswertung’)

Advantages:
e Avoids unnecessary evaluations
e Terminates as often as possible
e Supports infinite lists

e Increases modularity

Therefore Haskell is called a lazy functional langauge.
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Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.
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Evaluating expressions

Expressions are evaluated (reduced) by successively applying
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Example:
sq :: Integer -> Integer
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One evaluation:

sq(3+4) = sq 7

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:
sq :: Integer -> Integer
sgn = n*n

One evaluation:

sq(3+4) = sq7 = T %7
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Reduction strategies

An expression may have many reducible subexpressions:
sq (3+4)
Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated

before they are substituted into the function body

sq (3+4) = sq7 = 7 %7
Qutermost reduction Always reduce an outermost redex.

Corresponds to call by name:

The unevaluated arguments

are substituted into the the function body

sq (3+4) = (3+4) * (3+4)

Definition:
loop = tail loop

Comparison: termination

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop)
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Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Outermost reduction:

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Qutermost reduction:

fst (1,lo0p) = 1 fst (1,lo0p) = 1
Theorem If expression e has a terminating reduction sequence,
then outermost reduction of e also terminates.
LIS LGS
Comparison: termination
) Why is this useful?
Definition: Y

loop = tail loop

Innermost reduction:
fst (1,loop)

fst(1,tail loop)
fst(1,tail(tail loop))

Outermost reduction:
fst (1,lo0op) = 1

Theorem If expression e has a terminating reduction sequence,
then outermost reduction of e also terminates.

Outermost reduction terminates as often as possible

Example

Can build your own control constructs:

switch :: Int -> a -> a -> a
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Why is this useful?

Example

Can build your own control constructs:

switch :: Int -> a -> a -> a
switch n x y

| n>0 = X

| otherwise = y
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Why is this useful?

Example

Can build your own control constructs:

switch :: Int -> a -> a -> a
switch n x y

|l n>0 = x

| otherwise = y
fac :: Int -> Int

fac n = switch n (n * fac(n-1)) 1
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Comparison: Number of steps
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sq (3+4) = sq7 = 7 %7 = 49
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Comparison: Number of steps

Innermost reduction:
sq (3+4) = sq 7 = 7 7 = 49

Outermost reduction:

sq(3+4) = (3+4)*(3+4) = T7x(3+4) = T*7 = 49

More outermost than innermost steps!

Comparison: Number of steps

Innermost reduction:
sq (3+4) = sq7 = 77 = 49
Qutermost reduction:

5q(3+4) = (3+4)*(3+4) = Tx(3+4) = 77 = 49

More outermost than innermost steps!
How can outermost reduction be improved?

Sharing!
(] (=)&)
sq(3+4) = e x e sq(3+4) = e x e = e x e
o o o
3+4 3+4 7




Lazy evaluation never needs more steps than innermost reduction.

CES CIEY
sq(3+4) = e x e = e x e = 49 sq(3+4) = e x e = e x e = 49
o o o o
3+4 7 3+4 7
The expression 3+4 is only evaluated once! The expression 3+4 is only evaluated once!
Lazy evaluation := outermost reduction + sharing
LGS LES
sq(3+4) = e * e = e x e = 49 The principles of lazy evaluation:
\3‘+‘4/ \‘T‘/ e Arguments of functions are evaluated only
if needed to continue the evaluation of the function.
The expression 3+4 is only evaluated once!
Lazy evaluation := outermost reduction + sharing
Theorem
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(Remember fst (1,1lo0p))
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The principles of lazy evaluation:

e Arguments of functions are evaluated only

if needed to continue the evaluation of the function.

e Arguments are not necessarily evaluated fully,
but only far enough to evaluate the function.
(Remember fst (1,1lo0p))

e Each argument is evaluated at most once (sharing!)

=hEN
Pattern matching
Example
f [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y
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@]
Example
f :: [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [ = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:

£ [1..3] [7..9]
= f (1 : [2..3]) [7..9]

Pattern matching

—— does f.1 match?

=1EY
Example
f :: [Int] -> [Int] -> Int
f [] ys = 0
f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y

Lazy evaluation:

£ [1..3] [7..9]
= £ 1 : [2..3]) [7..9]

Pattern matching

—-— does f.1 match?
-- does f.2 match?
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Pattern matching Pattern matching
Example Example
f [Int] -> [Int] -> Int f [Int] -> [Int] -> Int
T ys = 0 f [ ys = 0
f (x:xs) [] = 0 f (x:xs) [] = 0
f (x:xs) (y:ys) = x+y f (x:xs) (y:ys) = x+y
Lazy evaluation: Lazy evaluation:
f [1..3] [7..9] -- does f.1 match? f [1..3] [7..9] -- does f.1 match?
= f (1 : [2..3]) [7..9] —— does .2 match? = f (1 : [2..3]) [7..9] -- does f.2 match?
= f (1 : [2..3]) (7 : [8..9]) -- does f.3 match? = f (1 : [2..3]) (7 : [8..9]) -- does f.3 match?
= 147
= 8
LES EHES
Guards Guards
Example Example
fmnp |l m>n&&m>p = n fmnp | m>n&m>p = m
| n>mé&& n>p = n | n>m& n>p = n
| otherwise = p | otherwise = p

Lazy evaluation:
f (2+43) (4-1) (3+9)
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Guards Guards
Example Example
fmnp | m>né&m>p = fmnp | m>n&m>p = m
| n > m& n>p = | n>m& n>p = n
| otherwise = | otherwise = p
Lazy evaluation: Lazy evaluation:
f (2+3) (4-1) (3+9) f (2+3) (4-1) (3+9)
7 2+3 >= 4-1 && 2+3 >= 349 7 2+3 >= 4-1 && 2+3 >= 349
? = 5 >=3 &k 5 >= 349
LGS |H )& |
Guards Guards
Example Example
fmnp | m>né&m>p = fmnp | m>n&m>p = m
| n > m& n>p = | n>m& n>p = n
| otherwise = | otherwise = p

Lazy evaluation:
f (243) (4-1) (3+9)
? 243 >= 4-1 && 2+3 >= 349
= b > 3 && 5 >= 349
= True && 5 >= 3+9
5 >= 349
5 >= 12
False
3 >= 5 && 3 >= 12

EENIREES BEEES BTN BEFEN BEEES )

Lazy evaluation:
f (2+3) (4-1) (3+9)

7 2+3 >= 4-1 && 2+3 >= 349
= b5 >= 3 && 5 >= 349
= True && 5 >= 349
= b >= 349

5 >= 12
False
>=5 && 3 >= 12
False && 3 >= 12
False
otherwise = True

I w
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Guards where
Example
fonnp|lm>né&&mn>p = n
| n>mé&& n>p = n
| otherwise = p
Lazy evaluation:
f (2+3) (4-1) (3+9) o o
? 043 >= 4-1 && 243 >= 349 Same principle: definitions in where clauses are only evaluated
? = B >= 3 &g 5 >= 349 when needed and only as much as needed.
? = True && 5 >= 349
7 = 5 >= 349
7T = b >= 12
? = False
? 3> 5 && 3 >= 12
? = False && 3 >= 12
7 = False
7 otherwise = True
= 12
(m]@) |
where Lambda

Same principle: definitions in where clauses are only evaluated
when needed and only as much as needed.

Haskell never reduces inside a lambda
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e Functions are black boxes

Lambda

Haskell never reduces inside a lambda

Example: \x —> False && x cannot be reduced
Reasons:

e Functions are black boxes

e All you can do with a function is apply it

Lambda

Haskell never reduces inside a lambda

Example: \x -> False && x cannot be reduced
Reasons:

e Functions are black boxes
e All you can do with a function is apply it

Example:
(\x —-> False && x) True = False && True = False
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Built-in functions

Arithmetic operators and other built-in functions
evaluate their arguments first

Example

3 * 5 jis a redex
0 * head (...) isnot a redex

Predefined functions from Prelude

They behave like their Haskell definition:

(&&) :: Bool -> Bool -> Bool
True & y =y
False && y False
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Slogan Slogan
Lazy evaluation evaluates an expression only when needed Lazy evaluation evaluates an expression only when needed

and only as much as needed. and only as much as needed.
( "Call by need")
oo o
Minimum of a list
min = head . inSort

12.1 Applications of lazy evaluation




inSort (x:xs) =

ins :: Ord a => a -> [a] —>

ins x [J = [x]

ins x (y:ys) | x <=y =
| otherwise =

— inSort [6,1,7,5]
= ins 6 (ins 1 (ins

7

ins x (inSort xs)

[al

X:y:ys
y : ins x ys

(ins 5 [1)))

DS E &
Minimum of a list Minimum of a list
min = head . inSort min = head . inSort
inSort :: Ord a => [a] -> [a] inSort :: Ord a => [a] -> [a]
inSort [] = [] inSort [] = []
inSort (x:xs) = ins x (inSort xs) inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [1 = [x]
ins x (y:ys) | x <=y = X :y :ys
| otherwise = y : ins X ys
DS E &
Minimum of a list
min [6,1,7,5] = head(inSort [6,1,7,5])
min = head . inSort
inSort :: Ord a => [a] -> [a]
inSort [] = [




Minimum of a list

min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
min = head . inSort
inSort :: Ord a => [a] -> [a]
inSort [] = [
inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [1 = I[x]
ins x (y:ys) | x <=y = X :y :ys
| otherwise = y : ins X ys

— inSort [6,1,7,5]
= ins 6 (ins 1 (ins 7 (ins 5 [1)))

min [6,1,7,5] = head(inSort [6,1,7,5]) min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1)))) = head(ins 6 (ins 1 (ins 7 (imns 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1))))
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min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))
head(ins 6 (ins 1 (5 : ins 7 [])))

min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1))))

= head(ins 6 (ins 1 (5 : ins 7 [])))

= head(ins 6 (1 : 5 : ins 7 [1))

min [6,1,7,5] = head(inSort [6,1,7,5])
= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))
= head(ins 6 (ins 1 (ins 7 (5 : [1))))

= head(ins 6 (ins 1 (5 : ins 7 []1)))

= head(ins 6 (1 : 5 : ins 7 []1))

= head(l : ins 6 (5 : ins 7 [1)))




min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 []1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))
head(ins 6 (ins 1 (5 : ins 7 []1)))
head(ins 6 (1 : 5 : ins 7 []))

head(1 : ins 6 (5 : ins 7 [1)))

1

min [6,1,7,5] = head(inSort [6,1,7,5])

= head(ins
= head(ins
head(ins
head(ins
= head(1 :
= 1

6 (ins 1 (ins 7 (ins 5 [1))))
6 (ins 1 (ins 7 (5 : [1))))

6 (ins 1 (5 : ins 7 [1)))

6 (1 : 5 : ins 7 [1))

ins 6 (5 : ins 7 [1)))

Lazy evaluation needs only linear time

min [6,1,7,5] = head(inSort [6,1,7,5])

head(ins 6 (ins 1 (ins 7 (ins 5 []1))))
head(ins 6 (ins 1 (ins 7 (5 : [1))))
head(ins 6 (ins 1 (5 : ins 7 [])))
head(ins 6 (1 : 5 : ins 7 []))

head(1 : ins 6 (5 : ins 7 [1)))

1

Lazy evaluation needs only linear time
although inSort is quadratic

min [6,1,7,5] = head(inSort [6,1,7,5])

= head(ins
= head(ins
= head(ins
= head(ins
= head(1 :
= 1

because

6 (ins 1 (ins 7 (ins 5 [1))))
6 (ins 1 (ins 7 (5 : [1))))

6 (ins 1 (5 : ins 7 [1)))

6 (1 : 5 : ins 7 [1))

ins 6 (5 : ins 7 [1)))

Lazy evaluation needs only linear time
although inSort is quadratic
the sorted list is never constructed completely




min [6,1,7,5] = head(inSort [6,1,7,5])

= head(ins 6 (ins 1 (ins 7 (ins 5 [1))))

= head(ins 6 (ins 1 (ins 7 (5 : [1))))

= head(ins 6 (ins 1 (5 : ins 7 [1)))
head(ins 6 (1 : 5 : ins 7 []))

= head(1 : ins 6 (5 : ins 7 [1)))

1

Lazy evaluation needs only linear time
although inSort is quadratic
because the sorted list is never constructed completely

Warning: this depends on the exact algorithm and does not work
so nicely with all sorting functions!

max = last . inSort

Complexity?

Maximum of a list

12.2 Infinite lists

A recursive definition

ones :: [Int]
ones = 1 : ones

Example
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A recursive definition

ones :: [Int]
ones = 1 : ones

that defines an infinite list of 1s:

ones

Example

A recursive definition

ones :: [Int]
ones = 1 : ones

that defines an infinite list of 1s:

ones = 1 : ones

Example

A recursive definition

ones :: [Int]
ones = 1 : ones

that defines an infinite list of 1s:
ones = 1 : ones = 1 :1 : ones =

What GHCi has to say about it:
> ones

t,1,1,1,1,1,1,4,4,4,4,4,4,4,4,1,4,1,1,14,1,1,1,1,1,1,1,1,1

Haskell lists can be finite or infinite

But Haskell can compute with infinite lists, thanks to lazy
evaluation:




But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones
1

Remember:

Lazy evaluation evaluates an expression only as much as needed

QOutermost reduction: head ones = head (1 : ones) = 1

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones

1

Remember:

Lazy evaluation evaluates an expression only as much as needed

Outermost reduction: head ones = head (1 : ones) = 1

Innermost reduction: head ones
head (1 : ones)
head (1 : 1 : ones)

Haskell lists are never actually infinite but only potentially infinite




Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed

This is how partially evaluated lists are represented internally:

1 : 2 : 3 : |code pointer to compute rest

Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed

This is how partially evaluated lists are represented internally:

1 : 2 : 3 : |code pointer to compute rest

In general: finite prefix followed by code pointer

Why (potentially) infinite lists?

Why (potentially) infinite lists?

e They come for free with lazy evaluation

e They increase modularity:
list producer does not need to know
how much of the list the consumer wants




Example: The sieve of [Eratosthenes

©® Create the list 2, 3, 4, ...

Example: The sieve of |Eratosthenes

@ Create the list 2, 3, 4, ...

® Output the first value p in the list as a prime.
® Delete all multiples of p from the list

@ Goto step 2

Example: The sieve of [Eratosthenes

©® Create the list 2, 3, 4, ...

® Output the first value p in the list as a prime.
® Delete all multiples of p from the list

® Goto step 2

23456789101112 ...

=ES!
In Haskell:
primes :: [Int]
primes = sieve [2..]
sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs,
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In Haskell: In Haskell

primes :: [Int] primes :: [Int]

primes = sieve [2..] primes = sieve [2..]

sieve :: [Int] -> [Int] sieve :: [Int] -> [Int]

sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0] sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]

Lazy evaluation:

primes = sieve [2..] = sieve (2:[3..1)
1%, | =ES!
In Haskell: In Haskell
primes :: [Int] primes :: [Int]
primes = sieve [2..] primes = sieve [2..]
sieve :: [Int] -> [Int] sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0] sieve (p:xs) = p : sieve [x | x <= xs, X ‘mod‘ p /= 0]
Lazy evaluation: Lazy evaluation:
primes = sieve [2..] = sieve (2:[3..1) primes = sieve [2..] = sieve (2:[3..1)
= 2 : sieve [x | x <- [3..], X ‘mod® 2 /= 0] = 2 : sieve [x | x <- [3..], ¥ ‘mod® 2 /= 0]

= 2 : sieve [x | x <- 3:[4..], x ‘mod‘ 2 /= 0]
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In Haskell
primes :: [Int]
primes = sieve [2..]
sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0]

Lazy evaluation:

LS|

In Haskell

primes ::

primes

sieve ::
sieve (p

[Int]
= gieve [2..]

[Int] -> [Int]
:xs) = p : sieve [x | x <= xs, x ‘mod‘ p /= 0]

Lazy evaluation:

Lazy evaluation:

primes
: sieve [x | x <= [3..], x ‘mod‘ 2 /= 0]
2 : sieve [x | x <- 3:[4..],
2

2 : 3 : sieve [x | x <= [xl|x <= [4..],

2

= sieve [2..] = sieve (2:[3..1)

x ‘mod¢ 2 /= 0]

X ‘mod‘ 2 /= 0])

X ‘mod®¢ 2 /= 0]

sieve (3 : [x | x <- [4..]1,

X ‘mod® 3 /= 0]

primes = sieve [2..] = sieve (2:[3..1) primes = sieve [2..] = sieve (2:[3..1)
= 2 : sieve [x | x <- [3..], X ‘mod® 2 /= 0] = 2 : sieve [x | x <- [3..], ¥ ‘mod® 2 /= 0]
= 2 : sieve [x | x <= 3:[4..], x ‘mod® 2 /= 0] = 2 : sieve [x | x <- 3:[4..], x ‘mod® 2 /= 0]
= 2 : sieve (3 : [x | x <= [4..], x ‘mod‘ 2 /= 0]) = 2 : sieve (3 : [x | x <- [4..], x ‘mod‘ 2 /= 0])
= 2 : 3 : sieve [x | x <- [xlx <- [4..], X ‘mod® 2 /= 0]
X ‘mod‘ 3 /= 0]
LIS, =EY
In Haskell: I\/Iodularity!
primes :: [Int]
primes = sieve [2..]
sieve :: [Int] -> [Int]
sieve (p:xs) = p : sieve [x | x <- xs, ¥ ‘mod® p /= 0]




Modularity!

The first 10 primes:

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
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Modularity!

The first 10 primes:

> take 10 primes
[2,3,5,7,11,13,17,19,23,29]
The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

> [(P,q) | (qu) <- ’ P+222q]

Modularity!

The first 10 primes:

> take 10 primes
[2,3,5,7,11,13,17,19,23,29]
The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)
[101,103,107,109,113,127,131,137,139,149]

All twin primes:

> [(p,q) | (p,q) <- zip primes (tail primes), p+2==q]




Primality test?

> 101 ‘elem‘ primes
True

> 102 ‘elem‘ primes

Primality test?

> 101 ‘elem® primes
True

> 102 ‘elem‘ primes
nontermination

Primality test?

> 101 ‘elem‘ primes
True

> 102 ‘elem‘ primes
nontermination

prime n = n ==

Primality test?

> 101 ‘elem® primes
True

> 102 ‘elem‘ primes
nontermination

prime n = n == head (dropWhile (<n) primes)
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Sharing! Primality test?
There is only one copy of primes
> 101 ‘elem® primes
True
> 102 ‘elem‘ primes
nontermination
prime n = n == head
ES L]ES|

Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated
Example: when computing take 5 primes

primes is (invisibly!) updated to remember the evaluated part

Example: primes = 2 : 3 : 5 : 7 : 11 : sieve ...
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Every time part of primes needs to be evaluated
Example: when computing take 5 primes
primes is (invisibly!) updated to remember the evaluated part
Example: primes = 2 : 3 : 5 : 7 : 11 : sieve
The next uses of primes are faster:

Example: now primes !! 2 needs only 3 steps




Sharing!

There is only one copy of primes

Every time part of primes needs to be evaluated
Example: when computing take 5 primes

primes is (invisibly!) updated to remember the evaluated part

Example: primes = 2 : 3 : 5 : 7 : 11 : sieve ...

The next uses of primes are faster:

Example: now primes !! 2 needs only 3 steps

Nothing special, just the automatic result of sharing

Idea:

0112 ..

The list of Fibonacci numbers

The list of Fibonacci numbers

|dea: 0112..
+ 011..

Idea:

0112 ..
011..
0123 ..

The list of Fibonacci numbers




(=)« (m)&]
The list of Fibonacci numbers The list of Fibonacci numbers
Idea: 0112 .. Idea: 0112 ..
+ 011 .. 011 ..
— 0123.. — 0123 ..
From Prelude: zipWith From Prelude: zipWith
Example: zipWith f [al, a2, ...] [b1l, b2, ...]
(=)« (m)&]
The list of Fibonacci numbers The list of Fibonacci numbers
Idea: 0112 .. Idea: 0112 ..
+  011.. +  011..
— 0123.. — 0123 ..

From Prelude: zipWith
Example: =zipWith f [al, a2, ...] [bl, b2, ...]
= [f a1 a2, f a2 b2, ...]

From Prelude: zipWith
Example: zipWith f [al, a2, ...] [b1l, b2, ...]
= [f a1 a2, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 :




The list of Fibonacci numbers

|dea: 0112..
+ 011..
0123 ..

From Prelude: zipWith
Example: =zipWith f [al, a2, ...] [bl, b2, ...]
= [f a1 a2, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

The list of Fibonacci numbers

Idea: 0112..
+ 011 ..
0123 ..

From Prelude: zipWith
Example: zipWith f [al, a2, ...] [b1l, b2, ...]
= [f a1 a2, f a2 b2, ...]

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

How about

fibs =0 : 1 : [x+y | x <- fibs, y <- tail fibs]

Hamming numbers

Game tree

data Tree p v = Tree p v [Tree p V]

Separates move computation and valuation from move selection
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Game tree
data Tree p v = Tree p v [Tree p V]

Separates move computation and valuation from move selection

Laziness:

e The game tree is computed incrementally,
as much as is needed
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Game tree

data Tree p v = Tree p v [Tree p V]
Separates move computation and valuation from move selection

Laziness:

e The game tree is computed incrementally,
as much as is needed

¢ No part of the game tree is computed twice

e Supports infinitely broad and deep trees (useful??)
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Game tree
data Tree p v = Tree p v [Tree p V]

Separates move computation and valuation from move selection

Laziness:

e The game tree is computed incrementally,
as much as is needed

e No part of the game tree is computed twice

e Supports infinitely broad and deep trees (useful??)

gameTree :: (p -> [p]) —> (p > v) > p > Tree p v

Game tree

data Tree p v = Tree p v [Tree p V]
Separates move computation and valuation from move selection

Laziness:

e The game tree is computed incrementally,
as much as is needed

¢ No part of the game tree is computed twice

» Supports infinitely broad and deep trees (useful??)

gameTree :: (p —> [pl) -—> (p > v) > p —> Tree p v
gameTree next val = tree where
tree p = Tree p (val p) (map tree (next p))




=)&) & )
Game tree
data Tree p v = Tree p v [Tree p V]
minimax :: Ord v => Int -> Bool -> Tree p v -> v

Separates move computation and valuation from move selection
Laziness:

e The game tree is computed incrementally,

as much as is needed

e No part of the game tree is computed twice

e Supports infinitely broad and deep trees (useful??)
gameTree :: (p -> [p]) —> (p > v) > p > Tree p v
gameTree next val = tree where

tree p = Tree p (val p) (map tree (next p))
chessTree = gameTree

Tt o T, S @ mD >y b T @ Tuelesd Q=
L ES LRI,

minimax :: Ord v => Int -> Bool -> Tree p v -> v minimax :: Ord v => Int -> Bool -> Tree p v -> v
minimax d playerl (Tree p v ts) = minimax d playerl (Tree p v ts) =

if d == || null ts then v if d == || null ts then v

else let vs = map (minimax (d-1) (not playerl)) ts else let vs = map (minimax (d-1) (not playerl)) ts

in if playerl then maximum vs else minimum vs in if playerl then maximum vs else minimum vs

> minimax 3 True chessTrese > minimax 3 True chessTree
Generates chessTree up to level 3 Generates chessTree up to level 3
> minimax 4 True chessTree > minimax 4 True chessTree
Needs to search 4 levels, but only level 4 needs to be generated Needs to search 4 levels, but only level 4 needs to be generated




