Script generated by TTT

Title: Nipkow: Info2 (07.01.2014)
Date: Tue Jan 07 15:30:35 CET 2014

Duration: 88:46 min

Pages: 119

$ 5 @O <> f = 4) @ Tuel5:30 Q =

|
Ll

10. Modules and Abstract Data Types

§ E @D <>y = 4) @ Tuel5:48 Q i=

| =
1#}d

10. Modules and Abstract Data Types

10.1 Modules 10.1 Modules

Module = collection of type, function, class etc definitions

10.1 Modules 10.1 Modules
Module = collection of type, function, class etc definitions Module = collection of type, function, class etc definitions
Purposes: Purposes:
e Grouping e Grouping

e [nterfaces Interfaces

e Division of labour Division of labour

e Name space management: M.f vs f ¢ Name space management: M.f vs f

Information hiding

10.1 Modules

Module = collection of type, function, class etc definitions

Purposes:
e Grouping

Interfaces

[]

Division of labour

e Name space management: M.f vs f

[]

Information hiding

GHC: one module per file

LS|

10.1 Modules

Module = collection of type, function, class etc definitions

Purposes:
e Grouping

Interfaces

Division of labour

e Name space management: M.f vs f

Information hiding

GHC: one module per file

Recommendation: module M in file M.hs

Module header

module M where -— M must start with capital letter

T

All definitions must start in this column

Module header

module M where —- M must start with capital letter

T

All definitions must start in this column

o Exports everything defined in M (at the top level)

Module header

Exporting data types

module M (T) where

data T = ...
module M where -— M must start with capital letter
T
All definitions must start in this column
e Exports everything defined in M (at the top level)
Selective export:
module M (T, f, ...) where
(m|[a)]

Exporting data types

module M (T) where
data T = ...

e Exports only T, but not its constructors

Exporting data types

module M (T) where
data T = ...

e Exports only T, but not its constructors

module M (T(C,D,...)) where
data T = ...

Exporting data types

module M (T) where
data T = ...

e Exports only T, but not its constructors

module M (T(C,D,...)) where
data T = ...

e Exports T and its constructors C, D, ...

module M (T(..)) where
data T = ...

Exporting data types

module M (T) where
data T = ...

e Exports only T, but not its constructors

module M (T(C,D,...)) where
data T = ...

e Exports T and its constructors C, D, ...

module M (T(..)) where
data T = ...

e Exports T and all of its constructors

Not permitted: module M (T,C,D) where

Exporting modules

LS|

Exporting modules
By default, modules do not export names from imported modules

(B

EN

L)
Exporting modules Exporting modules
By default, modules do not export names from imported modules By default, modules do not export names from imported modules
module B where module A where module B where module A where
import A f=... import A f=...
= B does not export £
Unless the names are mentioned in the export list
module B (f) where
import A
Or the whole module is exported
oo =)&)

Exporting modules

By default, modules do not export names from imported modules
module B where module A where

import A f=...

= B does not export f

Unless the names are mentioned in the export list

module B (f) where
import A

Or the whole module is exported

module B (module A) where
import A

import
By default, everything that is exported is imported

import
By default, everything that is exported is imported
module B where module A where
import A f=...
g = ...
— B imports f and g

Unless an import list is specified

LS|

import
By default, everything that is exported is imported

module B where module A where
import A f=...

g= ...
— B imports f and g

Unless an import list is specified

module B where
import A (£)

= B imports only f

import
By default, everything that is exported is imported

module B where module A where
import A f=...

g = ...
— B imports f and g

Unless an import list is specified

module B where
import A (f)

= B imports only f

Or specific names are hidden

module B where
import A hiding (g)

qualified

import A
import B
import C

Where does f come from??

qualified

import A
import B
import C
Where does f come from?77

Clearer: qualified names

. AT

qualified

import A
import B
import C
Where does f come from?7
Clearer: qualified names

. AT

Can be enforced:

import qualified A

Renaming modules

import TotallyAwesomeModule

. TotallyAwesomeModule.f

Renaming modules

import TotallyAwesomeModule
. TotallyAwesomeModule.f
Painful

More readable:

import qualified TotallyAwesomeModule as TAM

For the full description of the module system

see the Haskell report

Renaming modules

import TotallyAwesomeModule
. TotallyAwesomeModule.f ...
Painful

More readable:

import qualified TotallyAwesomeModule as TAM

. TAM.f ...

10.2 Abstract Data Types

10.2 Abstract Data Types

Abstract Data Types do not expose their internal representation

C
(#

10.2 Abstract Data Types

Abstract Data Types do not expose their internal representation

Why? Example: sets implemented as lists without duplicates

10.2 Abstract Data Types

Abstract Data Types do not expose their internal representation

Why? Example: sets implemented as lists without duplicates

e Could create illegal value: [1, 1]

C
(#

10.2 Abstract Data Types

Abstract Data Types do not expose their internal representation

Why? Example: sets implemented as lists without duplicates
e Could create illegal value: [1, 1]

e Could distinguish what should be indistinguishable:
(1, 21 /= [2, 1]

10.2 Abstract Data Types

Abstract Data Types do not expose their internal representation

Why? Example: sets implemented as lists without duplicates
e Could create illegal value: [1, 1]

e Could distinguish what should be indistinguishable:
[1, 21 /= [2, 1]

e Cannot easily change representation later

Example: Sets

module Set where
-- sets are represented as lists w/o duplicates
type Set a = [a]

empty :: Set a

empty = [

insert :: a -> Set a -> Set a
insert x xs = .

isin :: a —-> Set a -> Set a
isin x xs = .

size :: Set a —-> Integer

size xs =

Example: Sets

module Set where
-- sets are represented as lists w/o duplicates
type Set a = [a]

empty :: Set a

empty = [

insert :: a -> Set a -> Set a
insert x xs = .

isin :: a -> Set a -> Set a
isin X s = .

size :: Set a —> Integer

size Xxs =

Exposes everything

Example: Sets

module Set where
-- sets are represented as lists w/o duplicates
type Set a = [a]

empty :: Set a

empty = [

insert :: a -> Set a -> Set a
insert x xs = .

isin :: a —-> Set a -> Set a
isin x xs = .

size :: Set a —-> Integer

size xs =

Exposes everything
Allows nonsense like Set.size [1,1]

Better

module Set (Set, empty, insert, isin, size) where

Better

module Set (Set, empty, insert, isin, size) where

-— Interface

empty :: Set a

insert :: Eq a => a -> Set a -> Set a
isin :: Eqg a => a —> Set a -> Bool
size i Set a -> Int

Better

module Set (Set, empty, insert, isin, size) where

-— Interface

empty :: Set a

insert :: Eq a => a -> Set a -> Set a
isin :: Eg a => a -> Set a -> Bool
size :: Set a —> Int

-— Implementation

type Set a = [a]

Better

module Set (Set, empty, insert, isin, size) where

-- Interface

empty :: Set a

insert :: Eq a => a -> Set a -> Set a
isin :: Eqg a => a —> Set a -> Bool
size :: Set a -> Int

—-— Implementation

type Set a = [a]

e Explicit export list/interface

e But representation still not hidden

Better

module Set (Set, empty, insert, isin, size) where

-- Interface

empty :: Set a

insert :: Eq a => a -> Set a -> Set a
isin :: Eg a => a -> Set a -> Bool
size :: Set a —> Int

-— Implementation

type Set a = [a]

o Explicit export list/interface

e But representation still not hidden
Does not help: hiding the type name Set

Hiding the representation

module Set (Set, empty, insert, isin, size) where

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = S [a]

Hiding the representation

module Set (Set, empty, insert, isin, size) where

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = S [a]

empty = S []

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = S [a]

empty = S []
insert x (S xs) = S(if elem x xs then xs else x:xs)

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = S [a]

empty = S []
insert x (S xs) = S(if elem x xs then xs else x:xs)
isin x (S xs) = elem x xs

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = S [a]

empty = S []

insert x (S xs) = S(if elem x xs then xs else x:xs)
isin x (S xs8) = elem x xs

size (S xs) = length xs

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = S [a]

empty = S []

insert x (S xs) = S(if elem x xs then xs else xX:xs)
isin x (8 xs) = elem X Xxs

size (S xs) = length xs

Cannot construct values of type Set outside of module Set
because S is not exported

Hiding the representation

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = S [a]

empty = S []

insert x (S xs) = S(if elem x xs then xs else x:xs)
isin x (S xs) = elem x xs

size (S xs) = length xs

Cannot construct values of type Set outside of module Set
because S is not exported

Test.hs:3:11: Not in scope: data constructor ‘S’

Uniform naming convention: S ~~ Set

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = Set [a]

empty = Set []

insert x (Set xs) = Set(if elem x xs then xs else x:xs)
isin x (Set xs) = elem x Xs

size (Set xs) = length xs

Uniform naming convention: S ~+ Set

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = Set [a]

empty = Set []

insert x (Set xs) = Set(if elem X xs then xs else x:xs)
isin x (Set xs) = elem x xs

size (Set xs) = length xs

Uniform naming convention: S ~~ Set

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
data Set a = Set [a]

empty = Set []

insert x (Set xs) = Set(if elem x xs then xs else x:xs)
isin x (Set xs) = elem X xs

size (Set xs) = length xs

Which Set is exported?

Slightly more efficient: newtype

module Set (Set, empty, insert, isin, size) where
-— Interface

-— Implementation
newtype Set a = Set [a]

empty = Set []

insert x (Set xs) = Set(if elem X xs then xs else xX:xs)
isin x (Set xs) = elem x Xs

size (Set xs) = length xs

Conceptual insight

Data representation can be hidden
by wrapping data up in a constructor that is not exported

What if Set is already a data type?

module SetByTree (Set, empty, insert, isin, size) where

-- Interface

empty :: Set a

insert :: Ord a => a -> Set a -> Set a
isin :: Ord a => a -> Set a -> Bool
size :: Set a -> Integer

-— Implementation

type Set a = Tree a
data Tree a = Empty | Node a (Tree a) (Tree a)

What if Set is already a data type?

module SetByTree (Set, empty, insert, isin, size) where

-- Interface

empty :: Set a

insert :: Ord a => a -> Set a -> Set a
isin :: Ord a => a -> Set a -> Bool
size 11 Set a -> Integer

-— Implementation

type Set a = Tree a
data Tree a = Empty | Node a (Tree a) (Tree a)

No need for newtype:
The representation of Tree is hidden
as long as its constructors are hidden

Beware of == Beware of ==
module SetByTree (Set, empty, insert, isin, size) where
type Set a = Tree a
data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)
oo =@
Beware of == Beware of ==

module SetByTree (Set, empty, insert, isin, size) where
type Set a = Tree a

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)

Class instances are automatically exported and cannot be hidden

module SetByTree (Set, empty, insert, isin, size) where

type Set a = Tree a
data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)

Class instances are automatically exported and cannot be hidden

Client module:

import SetByTree
insert 2 (insert 1 empty) ==
insert 1 (insert 2 empty)

Beware of ==

module SetByTree (Set, empty, insert, isin, size) where

type Set a = Tree a
data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)

Class instances are automatically exported and cannot be hidden

Client module:

import SetByTree
insert 2 (insert 1 empty) ==
insert 1 (insert 2 empty)

Result is probably False — representation is partly exposed!

Beware of ==
module SetByTree (Set, empty, insert, isin, size) where

type Set a = Tree a
data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)

Class instances are automatically exported and cannot be hidden

Client module:

import SetByTree
insert 2 (insert 1 empty) ==
insert 1 (insert 2 empty)

Result is probably False — representation is partly exposed!

The proper treatment of ==

Some alternatives:
e Do not make Tree an instance of Eq
e Hide representation:

-- do not export constructor Set:

newtype Set a = Set (Tree a)

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)

The proper treatment of ==

Some alternatives:
¢ Do not make Tree an instance of Eq
e Hide representation:

—— do not export constructor Set:

newtype Set a = Set (Tree a)

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq)

e Define the right == on Tree:

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

Because empty simulates {}

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

simulates {}
simulates {_} U _

Because empty
and insert _ _

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

simulates {}
and insert _ _ simulates { }U_
and isin _ _ simulates _ &€ _
and size _ simulates ||

Because empty

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

Because empty simulates {}
and insert _ _ simulates { }U_
and isin _ _ simulates _ & _
and size _ simulates ||

Each concrete operation on the implementation type of lists
simulates its abstract counterpart on sets

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

Because empty simulates {}
and insert _ _ simulates { }U_
and isin _ _ simulates _ &€ _
and size _ simulates ||

Each concrete operation on the implementation type of lists
simulates its abstract counterpart on sets

NB: We relate Haskell to mathematics

10.3 Correctness

Why is module Set a correct implementation of (finite) sets?

Because empty simulates {}
and insert _ _ simulates { }U_
and isin _ _ simulates _ & _
and size simulates ||

Each concrete operation on the implementation type of lists
simulates its abstract counterpart on sets

NB: We relate Haskell to mathematics

For uniformity we write {a} for the type of finite sets over type a

From lists to sets

Each list [xy,...,x,] represents the set {xi,....x,}.

LIS LIS
From lists to sets From lists to sets
Each list [xy,...,x,] represents the set {xi,...,x,}. Each list [xy,...,x,] represents the set {xi,....x,}.
Abstraction function « :: [a]l -> {a} Abstraction function « :: [a]l -> {a}
afxi,. .., Xn] = {x1,..., Xn} afxi,..., Xn] = {x1,..., Xp }
In Haskell style: o [1 = {}
a (x:xs) = {x} U a xs
LIS LIIES;
From lists to sets
Each list [xy,...,x,] represents the set {x,...,x,}. 10.3 Correctness
Abstraction function o :: [a]l -> {a} Why is module Set a correct implementation of (finite) sets?

In Haskell style: o [1 = {}
a (x:xs) = {x} U a xs

"

What does it mean that “lists simulate (implement) sets”:

Because empty simulates {}
and insert _ _ simulates { }U_
and isin _ _ simulates _ &€ _
and size _ simulates ||

Each concrete operation on the implementation type of lists
simulates its abstract counterpart on sets

NB: We relate Haskell to mathematics

For uniformity we write {a} for the type of finite sets over type a

LES
From lists to sets
Each list [xy,...,x,] represents the set {xi,...,x,}.
Abstraction function « :: [a]l -> {a}

In Haskell style: o [1 = {}
a (x:xs) = {x} U a xs

What does it mean that “lists simulate (implement) sets”:

From lists to sets

Each list [xy,...,x,] represents the set {xi,....x,}.
Abstraction function « :: [a]l -> {a}
afxt,..., Xn| = {x1,.... Xp }

In Haskell style: o [1 = {}
a (x:xs) = {x} U a xs

What does it mean that “lists simulate (implement) sets":

o (concrete operation) = abstract operation « (concrete operation) = abstract operation
a empty = {}
LY &
From lists to sets From lists to sets
Each list [xy,...,x,] represents the set {xi,...,x,}. Each list [xy,...,x,] represents the set {xi,....x,}.
Abstraction function « :: [a]l -> {a} Abstraction function « :: [a]l -> {a}
afxi, ..., Xn] = {x1,..., Xn} alxi, ..., Xn] = {x1,.... Xn}

In Haskell style: o [1 = {}
a (x:xs) = {x} U a xs

What does it mean that “lists simulate (implement) sets”:

o (concrete operation) = abstract operation

{

{x} U a xs

o empty

« (insert x xs)

In Haskell style: o [1 = {}
a (x:xs) = {x} U a xs

What does it mean that “lists simulate (implement) sets":

« (concrete operation) abstract operation

a empty = {}
o (insert x xs) = {x} U «a xs
isin X X8 = X € « XS

size xs = |« xs|

o me
From lists to sets
Each list [xy,...,x,] represents the set {xi,....x,}.
Abstraction function « :: [a]l -> {a}
afxt,..., Xn| = {x1,.... Xp }
For the mathematically enclined: In Haskell style: o [1 = {}
« must be a homomorphism o (x:xs) = {x} U a xs
What does it mean that “lists simulate (implement) sets":
« (concrete operation) = abstract operation
a empty = {}
o (insert x xs) = {x} U «a xs
isin x xs = X € « xs8
size xs = |« xs|
@) me
Implementation |: lists with duplicates Implementation I: lists with duplicates
empty = [] empty = [
insert x ¥xs = X ! Xs insert x Xxs = X ! Xs
isin x xs = elem x xs isin x xs = elem x X8
size xs = length(nub xs) size xs = length(nub xs)

The simulation requirements:

a empty = {}

empty
insert x Xs
isin x xs
size Xxs

The simulation

= [

= X : X8

= elem x xs

= length(nub xs)

requirements:

Implementation |: lists with duplicates

Implementation I: lists with duplicates

empty = [

insert x xs = X :!: Xs

isin x Xs = elem x Xs

size xs = length(nub xs)

The simulation requirements:

a empty = {} o empty = {}
a (insert x xs) = {x} U a xs
[m]@) ma
Implementation |: lists with duplicates Implementation Il: lists without duplicates

empty = [] empty = [

insert x Xs = X : Xs insert x xs = 1if elem X Xs then xs else X:Xxs
isin x xs = elem x XS isin x xs = elem X XS

size xs = length(nub xs) size xs = length xs

The simulation

o (insert x xs)

requirements:

« empty

isin x X8 =

size xs

{
{x} U a xs
X € a XS

| xs|

Two proofs immediate, two need lemmas proved by induction

LES
Implementation Il: lists without duplicates
empty = [
insert x xs = 1if elem x xs then xs else X:Xs
isin x xs = elem X X8
size xs = length xs

The simulation requirements:

Implementation Il: lists without duplicates
empty = [
insert x xs = 1if elem x Xxs then xs else X:Xs
isin x Xs = elem X X8
size xs = length xs

The simulation requirements:

a empty = {} o empty = {}
« (insert x xs) = {x} U a xs
S LS|
Implementation Il: lists without duplicates Implementation Il: lists without duplicates

empty = [] empty = [

insert x xs = 1if elem x xs then xs else X:Xxs insert x xs = 1f elem x Xs then xs else X:xs
isin X xs = elem X Xs isin X xs = elem X X8

size xs = length xs size xs = length xs

The simulation requirements:

a empty = {}
o (insert x xs) = {x} U a xs
isin X Xs = X € « Xs

size xs = |a xs

The simulation requirements:

{

{x} U a xs

v empty

« (insert x xs)

LES
From lists to sets
Each list [xy,...,x,] represents the set {xi,...,x,}.
Abstraction function « :: [a]l -> {a}

In Haskell style: o [1 = {}
a (x:xs) = {x} U a xs

What does it mean that “lists simulate (implement) sets”:

o (concrete operation) abstract operation

For the mathematically enclined:
« must be a homomorphism

a empty = {}
« (insert x xs) = {x} U a xs
isin x xs = X € « Xs
size xs = |a xs|
S LS|
Implementation Il: lists without duplicates Implementation Il: lists without duplicates

empty = [] empty = [
insert x xs = 1if elem x xs then xs else X:Xxs insert x xs = 1f elem x Xs then xs else X:xs
isin X xs = elem X Xs isin X xs = elem X X8
size xs = length xs size xs = length xs

The simulation requirements:

a empty = {}
o (insert x xs) = {x} U a xs
isin x X8 = X € « X8
size xs = |a xs|

Needs invariant that xs contains no duplicates

The simulation requirements:

a empty = {}
« (insert x xs) = {x} U a xs
isin x Xs = X € « X8
size xs = |a xs|

Needs invariant that xs contains no duplicates

invar :: [a] -> Bool
invar [] = True
invar (x:xs) not(elem x xs) &&% invar xs

empty
insert x Xs
isin x xs
size Xxs

Implementation Il: lists without duplicates

(]

if elem x Xxs then xXs else X:Xs
elem X Xs
length xs

Revised simulation requirements:

empty
insert x Xs
isin x Xs
size Xs

Implementation Il: lists without duplicates

(]

if elem x Xs then xXs else X:Xs
elem X Xs
length xs

Revised simulation requirements:

a empty = {} «a empty = {}
invar xs = « (insert x xs) = {x} U a xs invar xs = o (insert x xs) = {x} U a xs
invar xs — isin x Xs = X € «a XS invar xs — isin x xs = X € « Xxs
invar xs — size xs = |a xs| invar xs = size xs = |a xs|
Proofs omitted.
(& =&
Implementation Il: lists without duplicates Implementation Il: lists without duplicates
empty = [] empty = [
insert x xs = 1if elem X Xs then xs else x:Xs insert x xs = 1if elem X Xs then xs else X:Xxs
isin x xs = elem x XS isin x xs = elem X Xs
size xs = length xs size xs = length xs

Revised simulation requirements:

invar xs = «a (insert x xs)

invar xs —

o empty = {}
= {x} U o xs
isin x Xs = X € « Xs

Revised simulation requirements:

Implementation Il: lists without duplicates
empty = [
insert x xs = 1if elem x xs then xs else X:Xs
isin x Xs = elem x Xs
size xs = length xs

Revised simulation requirements:

o empty = {}
invar xs = « (insert x xs) = {x} U a xs
invar xs — isin x Xs = X € «a XS

invar must be invariant!

In an imperative context:

If invar is true before an operation,
it must also be true after the operation

In a functional context:

If invar is true for the arguments of an operation,
it must also be true for the result of the operation

invar must be invariant!

In an imperative context:

If invar is true before an operation,
it must also be true after the operation

In a functional context:

If invar is true for the arguments of an operation,
it must also be true for the result of the operation

invar is preserved by every operation

invar must be invariant!

In an imperative context:

If invar is true before an operation,
it must also be true after the operation

In a functional context:

If invar is true for the arguments of an operation,
it must also be true for the result of the operation

invar is preserved by every operation

invar empty

invar xs = invar (insert x xs)

C
(#

invar must be invariant!

In an imperative context:

If invar is true before an operation,
it must also be true after the operation

In a functional context:

If invar is true for the arguments of an operation,
it must also be true for the result of the operation

invar is preserved by every operation

invar empty

invar xs = invar (insert x xs)

Proofs do not even need induction

Summary

S

Summary

Let C and A be two modules that have the same interface:
a type T and a set of functions F

To prove that C is a correct implementation of A define
an abstraction function « C.T > AT

LS|

Summary

Let C and A be two modules that have the same interface:
a type T and a set of functions F
To prove that C is a correct implementation of A define
an abstraction function « C.T > AT

and an invariant invar C.T -> Bool

S

Summary

Let C and A be two modules that have the same interface:
a type T and a set of functions F
To prove that C is a correct implementation of A define

LS|

Summary

Let C and A be two modules that have the same interface:
a type T and a set of functions F
To prove that C is a correct implementation of A define

an abstraction function « C.T —> AT an abstraction function C.T —> AT
and an invariant invar C. T -> Bool and an invariant invar C. T -> Bool
and prove for each f € F: and prove for each f € F:
e invar is invariant: e invar is invariant:
invar x; A--- Ainvar x, = invar (C.f x; ... x,) invar x; A--- Ainvar x, = invar (C.f x; ... x,)
(where invar is True on types other than C.T)
(@] |
Summary

Let C and A be two modules that have the same interface:
a type T and a set of functions F
To prove that C is a correct implementation of A define

an abstraction function « C.T > AT
and an invariant invar C. T -> Bool
and prove for each f € F:
e invar is invariant:
invar x; A--- Ainvar x, = invar (C.f x; ... x,)

(where invar is True on types other than C.T)

e (C.f simulates A.f:

invar x; A .-+ A invar x, —

a(C.f x1 ... xp) = Af (ax1) ... (a0 xp)

(where «v is the identity on types other than C.T)

11. Case Study: Huffman Coding

