0o W@ D <> § <P 4 @& Tuel530 Tobias Nipkow Q :=

& TIT
H]%]}.3 Case study: boolean formulas

Script generated by TTT

Title: Nipkow: Info2 (10.12.2013)
Date: Tue Dec 10 15:30:48 CET 2013

Duration: 82:29 min

Pages: 149
1.3 Case study: boolean formulas H]%]}.3 Case study: boolean formulas
type Name = String type Name = String

data Form = F | T

1.3 Case study: boolean formulas

type Name

data Form

= String

FI| T
| Var Name

type Name

data Form

H]%]}.3 Case study: boolean formulas

= String

=F | T
| Var Name
| Not Form

1.3 Case study: boolean formulas

type Name

data Form

= String

=F | T

| Var Name

| Not Form

| And Form Form
| Or Form Form

type Name

data Form

H]%]}.3 Case study: boolean formulas

= String

=F | T

| Var Name

| Not Form

| And Form Form
| Or Form Form
deriving Eq

5% }.3 Case study: boolean formulas

type Name

data Form

String

FIT

Var Name

Not Form

And Form Form
Or Form Form

deriving Eq

Example: Or (Var "p") (Not(Var "p"))

CIES

1.3 Case study: boolean formulas

type Name = String

data Form = F | T
| Var Name

| Not Form

| And Form Form
| Or Form Form

deriving Eq
Example: Or (Var "p") (Not(Var "p"))

More readable: symbolic infix constructors, must start with :

data Form = F | T | Var Name
| Not Form

| Form :&: Form

| Form :|: Form

deriving Eq

5% }.3 Case study: boolean formulas

type Name

data Form

String

FIT

Var Name

Not Form

And Form Form
Or Form Form

deriving Eq

Example: Or (Var "p") (Not(Var "p"))

More readable: symbolic infix constructors, must start with :

data Form

F | T | Var Name

Not Form
Form :&: Form
Form :|: Form

deriving Eq

Now: Var "p" :|: Not(Var "p")

Pretty printing

par :: String -> String
par s = |r(|| ++ s ++ |I)II

C
(#

par :: String -> String
par g = |I(Il ++ s ++ |r)|l

instance Show Form where

Pretty printing

par :: String -> String
par s = |r(|| ++ s ++ |I)II

instance Show Form where
show F = "F"
show T = "T"
show (Var x)
show (Not p)

X

Pretty printing

par("~" ++ show p)

C
(#

par :: String -> String
par g = |I(Il ++ s ++ |r)|l

instance Show Form where
show F = "F"
show T = "T"
show (Var x) X
show (Not p) = par("™" ++

Pretty printing

show p)

show (p :&: q) = par(show p ++ " & " ++ show q)

par :: String -> String
par s = |r(|| ++ s ++ |I)II

instance Show Form where
show F = "F"
show T = "T"
show (Var x) X
show (Not p) = par("™" ++

Pretty printing

show p)

show (p :&: q) = par(show p ++ " & " ++ show q)

show (p :|: q)

par(show p ++ " | " ++ show q)

Pretty printing

par :: String -> String
par g = n(u ++ s ++ |r)||

instance Show Form where

show F = "F"

show T = "T"

show (Var x) = x

show (Not p) = par("~" ++ show p)

Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:

Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:

Not (Not T) and T mean the same

Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:

Not (Not T) and T mean the same but are different:

Not(Not T) /=T

C
(#

Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:

Not (Not T) and T mean the same but are different:
Not(Not T) /=T
What is the meaning of a Form?

Its valuel?

But what is the value of Var "p" ?

LS|

-— Wertebelegung
type Valuation =

[(Name,Bool)]

NS

-— Wertebelegung
type Valuation = [(Name,Bool)]

eval :: Valuation -> Form -> Bool

-— Wertebelegung
type Valuation =

eval :: Valuation
eval _ F = False

[(Name,Bool)]

-> Form -> Bool

-— Wertebelegung
type Valuation =

[(Name,Bool)]

-— Wertebelegung
type Valuation =

[(Name,Bool)]

type Valuation =

eval ::
eval _ F = False
eval T = True

eval v (Var x) =

[(Name,Bool)]

Valuation -> Form -> Bool

the (lookup x V)

where

the(Just b) = b

type Valuation =

Valuation
F = False

eval ::
eval _
eval _ T = True
eval v (Var x)
(Not p)

eval v

eval :: Valuation -> Form -> Bool eval :: Valuation -> Form -> Bool
eval _ F = False eval _ F = False
eval _ T = True eval _ T = True
eval v (Var x) = the(lookup x V)
ma &
-— Wertebelegung -— Wertebelegung

[(Name,Bool)]

-> Form -> Bool

the (lookup x V)
not(eval v p)

where

the(Just b) = b

-— Wertebelegung

type Valuation = [(Name,Bool)]

-— Wertebelegung

type Valuation = [(Name,Bool)]

type Valuation = [(Name,Bool)]

eval :: Valuation -> Form -> Bool

eval _ F = False

eval _ T = True

eval v (Var x) = the(lookup x v) where
eval v (Not p) = not(eval v p)

eval v (p :&: q) = eval v p && eval v q
eval v (p :l: q) =eval vp || eval v q

> eval [("a",False), ("b",False)]
(Not(Var "a") :%: Not(Var "b"))

the(Just b) = b

eval :: Valuation -> Form -> Bool eval :: Valuation -> Form -> Bool
eval _ F = False eval _ F = False
eval _ T = True eval _ T = True
eval v (Var x) = the(lookup x v) where the(Just b) =b eval v (Var x) = the(lookup x v) where the(Just b) =D
eval v (Not p) = not(eval v p) eval v (Not p) = not(eval v p)
eval v (p :&: q) = eval v p && eval v q eval v (p :&: q) = eval v p && eval v q
eval v (p :l: q) =eval vp || eval v q
LIS E& 1| valuations for a given list of variable names:
-- Wertebelegung vals :: [Name] -> [Valuation]

B % \Il valuations for a given list of variable names:

S% Al valuations for a given list of variable names:

vals :: [Name] -> [Valuation] vals :: [Name] -> [Valuation]
vals []1 = [[]1] vals [1 = [[1]
vals (x:xs) = [(x,False):v | v <- vals xs] ++
[(x,True):v | v <- wvals xs]

B % \Il valuations for a given list of variable names:

%\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation] vals :: [Name] -> [Valuation]
vals []1 = [[]1] vals [1 = [[1]
vals (x:xs) = [(x,False):v | v <- vals xs] ++ vals (x:xs) = [(x,False):v | v <- vals xs] ++
[(x,True):v | v <- vals xs] [(x,True):v | v <- vals xs]
vals ["b"] vals ["b"]
= [("b",False):v | v <- vals [[]]] ++

= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

[("b",True):v | v <- vals [[]1]]
= [("b",False):[1] ++ [("b",True):[]1]

1%\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[1]

vals (x:xs) = [(x,False):v | v <- vals xs] ++
[(x,True):v | v <- vals xs]

."ra-:l-S [llbll]

= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[1] ++ [("b",True):[]]

= [("b",False), ("b",True)]

EI% A\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[]]

vals (x:xs) = [(x,False):v | v <- vals xs] ++
[(x,True):v | v <- wvals xs]

vals ["b"]
= [("b",False):v | v <- vals [[]]] ++
[("b",True):v | v <- vals [[]1]]

1% \Il valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[1]

vals (x:xs) = [(x,False):v | v <- vals xs] ++
[(x,True):v | v <- vals xs]

."ra-:l-S [llbll]

= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[1] ++ [("b",True):[]]

= [("b",False), ("b",True)]

vals [llall’llbll]
= [("a”,False):v I v <- vals [”b"]] 44
[("&” ,True) v I v <- vals [”b"]]

E& 1| valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals []1 = [[]]

vals (x:xs) = [(x,False):v | v <- vals xs] ++
[(x,True):v | v <- vals xs]

vals ["b"]

= [("b",False):v | v <- vals [[1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[1] ++ [("b",True):[]1]

= [("b",False), ("b",True)]

vals ["a","b"]

= [("a",False):v | v <- vals ["D"]] ++
[("a",True):v | v <- vals ["b"]]

= [[("a",False), ("b",False)] ++ [("a",False),("b",True)] +
[[("a",True), ("b",False)] ++ [("a",True), ("b",True)]

S% Al valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[1]

vals (x:xs) = [(x,False):v | v <- vals xs] ++
[(x,True):v | v <- vals xs]

ValS [llbll]

= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[]] ++ [("b",True):[]1]

= [("b",False), ("b",True)]

vals ["a","b"]

= [("a",False):v | v <- vals ["b"]] ++
[("a",True):v | v <- vals ["b"]]

= [[("a",False), ("b" False)] ++ [("a",False),("b",True)] +
[[("a",True), ("b",False)] ++ [("a",True), ("b",True)]

Does vals construct all valuations?

RS

Does vals construct all valuations?

prop_valsl xs =
length(vals xs) ==

Does vals construct all valuations?

prop_valsl xs =

length(vals xg) == 2 ° length xs

Does vals construct all valuations?

prop_valsl xs =
length(vals xs) == 2 ~ length xs
prop_vals2 xs =
distinct (vals xs)

distinct Eq a => [a] -> Bool
distinct [] = True
distinct (x:xs) = not(elem x xs) && distinct xs

Does vals construct all valuations?

prop_valsl xs =
length(vals xs) == 2 "~ length xs
prop_vals2 xs =
distinct (vals xs)

distinct Eq a => [a] -> Bool
distinct [] = True
distinct (x:xs) = not(elem x xs) && distinct xs

Loading package random-1.@.1.1 ... linking ... done.

Loading package containers-@.4.2.1 ... linking ... done.

Loading package pretty-1.1.1.@ ... linking ... done.

Loading package template-haskell . linking ... done.

Loading package QuickCheck-2.5.1.1 ... linking ... done.

~C*¥E*E Failed! Exception: 'user interrupt' (after 26 tests):
["~SIT3\144H"DC2&"168z*DC3&","& “243YiNETB","P %", "\DLEN176%a)4n)248%229X \v1N\D
LE@", "™ 1311 w197 ESC=N240#%S075DCL", "SN214N2 10V EOT="204uNDC2) N r NAK 1345255 h
156B", "INFSN184+7X5196]1%158m 20651535242 ", "N 230 ETXNS0r/NSTXMCNDC3KXR [N 197 RS,
"WN252", "NBN2OSGPNCANSSN 191229 1\ US0zCNDNET BN 250 AN NN ETXLN 145", "N149%ETB) -EX 13501
83*FN24500179%180P+123 1GNDC2 W 175%™, "JNETBN221NNULN 186", "1 '\227 246 (6% 159p™220q
N205%1570228Nn%2365851 =", "N250PX N 140 5DLENY ", "SNNULFFSNRSg!; FAEOT[\168%DC1", "\CAN
N138FNURVANULBN18@~MESCHN2228NDC3LNDCI*A N " =NGSN137 ", "QUNEOTRNSONETXNESCN18604N\20
Z1_"N191%13@NETB=<", ™", "Ny 1 "N ek 194=[NENQANI86) NRSIANDINDCAUGH ", " =@M 1591\ 17
18145MN212MUSN162AWSajIN2 18 (W222# NN 16 INET X 2=",""]

*Form>

| || | prow188:~ nipkous [|
[EES

Demo
Terminal Shell Edit View Window Help B ¢y Bam @ 4D <> ¢ & <’ & @ Tuel5:57 Tobias Nipkow Q =
B - B
FMI_EG.pdf Physical Theatergruppenenga lapbroy100 HD

@00 || Code — ghc — 80x24

*Form:>

*Form: . .

“Fors Restrict size of test cases:

*Form> quickCheck prop_valsl

Leading package array-©.4.0.@ ... linking ... done. prop_valsl’ xs =

Loading package deepseq-1.3.0.0 ... linking ... done. _ L

Loading package old-locale-1.@.@.4 ... linking ... done. 1e11gt11 xs <= 10 ==

Loading package time-1.4 ... linking ... done.]_ength(vals Xxs) == 2 ° length xs

prop_vals2’ xs =
length xs <= 10 ==> distinct (vals xs)

® Terminal Shell Edit View Window Help M ¢y W@ @ 4 <> « 4 < ¢ @ Tue15:58 Tobias Nipkow Q = o Terminal Shell Edit View Window Help ™ ¢ g @ D <> « 4 <7 # @ Tue 15:59 Tobias Nipkow Q =
® 00 Code — ghc — 80x24 2 ® 00 Code — ghc — 80x24 7
Loading package template-haskell . linking ... done. = LE@", "N13 1NN 197NESC=124040S07NDC1 ", "$5214N210Vp N EOT= \204u\DC2)\r‘\NAK\134\255h\E
Loading package QuickCheck-2.5.1.1 ... linking ... done. 1563",")\FS\184+7X\196]\158]m\206\153\242","\239\ETX\SOPf\STXMC\DC3KXR[\197\RS",

AC*** Failed! Exception: 'user interrupt’ (after 26 tests):

["“SIT3\144H"D(2&"168z*DC3&","& “243YiNETB","P %", "NDLEN176%a)4n)"248%229X \v1 D

LE®", "\1311\WN197NESC=1240#807 \DC1", "$214%210Vp EOT="\204u\DC2) r’"\NAK~134%255h™

156B", "INFSN18447X5 19605158 2064153242 " , "~ 239 ETX S0r/~STXMc“DC3KXR [~ 197 RS ",

"W 252", "NBN 20567 CANSY 191229t USoz (Wb ETB 250~ v ETX LN 145") "N 1495 FETB) -FX 1351

83* 7245001795 180P+%23 165D 2w 175%" , "jHETB~22 TMNUL~ 186", "i '\227 246 (6N 159p 220q

N205MN157% 228236580 T =", "N200PX N 140NDLE ", "~ NULF~FS~RSg ! ; F~EOT[~168~DC1", "~ CAN

S138F N "RVANULB180-MFSCN2228MDC3 LNDC1I*¥A ["=~ GSN 137 ", "QunEOTSONETXNESCH 1860420
_UNI9TNTI3ONETB" " "N Y "N kAN 1A= [NENQ AN 186) RSTAND INDCAUCH" | "=05 1591y~ 17

TH145% 212708162 AW a)2 18 (2228 M 16 INETXZ=",""]

*Form:=

*Form:=

*Form=

*Form:>

*Form:>

*Form:>

*Form:>

*Form> quickCheck prop_valsl’

+++ 0K, passed 100 tests.

*Form> quickCheck prop_valsl’

+++ 0K, passed 100 tests.

*Form:>

Q !ruylw:" nipkous [] : ’

Restrict size of test cases:

prop_valsl’ xs =
length xs <= 10
length(vals xs) == 2 " length xs
prop_vals2’ xs =

length xs <= 10 ==> distinct (vals xs)

Demo

"Vh252", "NBN20SGPNCANSN191MN229N N US 0z CONBNETBYN 250 A nNETXLN 145", "N 149NETB) -EXN135%1

83*7N\2450M179%180P +\231GNDC2NwN175%", "JNETB®221 NULN186" , "1 "\227%246(6~159p 2204

N205%157%228n%236N\&51>", "N250PX 1N 140 NDLENY ", "SNULF~FS\RSg | ; fNEOT[~168\DC1", "“CAN

S138FNRVANULBYN 180~ ESCH 2228 DC3LDC1I*Q [N "= GS%137 ", "OunEOTSONETXES(~ 1860420
NN I3ONETB" s ek 1 94= [N ENQ AN 186) SRS T AL I DCAUCH ", "=0 1591 y™ 17

1514582 125USN 162 AW~ aj)2 18 (W 222#n 16 1ETXZ=",""]

*Form:

*Form:

*Form:

*Form:

*Form:

*Form:

*Form:>

*Form> quickCheck prop_valsl®

+++ OK, passed 100 tests.

*Form> quickCheck prop_valsl®

+++ OK, passed 100 tests.

*Form> quickCheck prop_vals2®

+++ OK, passed 100 tests.

*Form> quickCheck prop_vals2®

+++ OK, passed 100 tests.

*Form:

D Q !ruyl@@r nipkow$ [] : ’

®& Terminal Shell Edit View Window Help ™ ¢3 Wag @ 4D <> vy f < % @@ Tue 16:00 Tobias Nipkow Q =

8 00 Code — ghc — 80x24 "

LEG", "\ 131WANI97N\ESC=N24040\S07N\DC1 ", "$52 1452 10Vp N EOT="204uNDC2) NP NAKN 1344255 hy, ®

156B",")\FS\184+?X\196]\158]m\206\153\242","\239\ETX\SOP/\STXMC\DC3KXR[\19?\RS",

"Vh252", "NBN20SGPNCANSN191MN229N N US 0z CONBNETBYN 250 A nNETXLN 145", "N 149NETB) -EXN135%1

83*7N\2450M179%180P +\231GNDC2NwN175%", "JNETB®221 NULN186" , "1 "\227%246(6~159p 2204

N205%157%228n%236N\&51>", "N250PX 1N 140 NDLENY ", "SNULF~FS\RSg | ; fNEOT[~168\DC1", "“CAN

N138*N\"RVNNULB180~NESCN222&N\DC3LNDCI*O[N">NGSN137 ", "UNEOTSNSONETXNESCN 18604420
CUNIOINZONETB" s K 194= [N ENQ AT 86D S RSTANE IS DCAUCH ", =0 1591y ™ 17

1514582 125USN 162 AW~ aj)2 18 (W 222#n 16 1ETXZ=",""]

*Form:

*Form:

*Form:

*Form:

*Form:

*Form:

*Form:

*Form> quickCheck prop_valsl®

+++ OK, passed 100 tests.

*Form> quickCheck prop_valsl®

+++ OK, passed 100 tests.

*Form> quickCheck prop_vals2®

+++ OK, passed 100 tests.

*Form> quickCheck prop_vals2®

+++ OK, passed 100 tests.

*Form=>

D Q !ruyl@@r nipkow$ [] : ’

Restrict size of test cases:

prop_valsl’ xs =
length xs <= 10 ==>
length(vals xs) == 2 " length xs

prop_vals2’ xs =
length xs <= 10 ==> distinct (vals xs)

Demo

satisfiable ::

Satisfiable and tautology

Form -> Bool

satisfiable p = or [eval v p | v <- vals(vars p)]

Satisfiable and tautology

satisfiable :: Form -> Bool

satisfiable ::

Satisfiable and tautology

Form -> Bool

satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form -> Bool

tautology = not

. satisfiable . Not

Satisfiable and tautology
satisfiable :: Form -> Bool
satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form —-> Bool
tautology = not . satisfiable . Not

vars :: Form -> [Name]

m)a

pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

@)«

Satisfiable and tautology

satisfiable :: Form -> Bool
satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form -> Bool
tautology = not . satisfiable . Not

vars :: Form -> [Name]

vars F = []

vars T = []

vars (Var x) [x]

vars (Not p) vars p

vars (p :&: q) = nub (vars p ++ vars q)
vars (p :|1: q) = nub (vars p ++ vars q)

|| & |

Simplifying a formula: Not inside?

|| & |

Simplifying a formula: Not inside? Simplifying a formula: Not inside?

isSimple :: Form -> Bool isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p)
LGS LI(ES
Simplifying a formula: Not inside? Simplifying a formula: Not inside?
isSimple :: Form -> Bool isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p) isSimple (Not p) = not (isOp p)
where where
isOp (Not p) = True isOp (Not p) = True
isOp (p :&: q@) = True isOp (p :&: q) = True
isOp (p :1: @) = True isOp (p :1: @ = True
isOp p = False

=)@ (m)@]

Simplifying a formula: Not inside?

isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p)
where
isOp (Not p) = True
isOp (p :&: q@) = True
isOp (p :1: @) = True
isOp p = False
isSimple (p :&: q) = 1isSimple p && isSimple q
isSimple (p :l1: @) = 1isSimple p && isSimple q
isSimple p = True
LIS

Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where

pushNot (Not p) =

@)«

Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)

|| & |

Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
LGS

Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where

pushNot (Not p)
pushNot (p :&: q)

P

m)a

Simplifying a formula: Not inside!

Form -> Form
pushlNot (simplify p)

simplify ::
simplify (Not p) =
where
pushNot (Not p)
pushNot (p :&: q)
pushNot (p :|: q)
pushNot p =

p
pushNot p :|: pushNot g

pushNot p :&: pushNot g

@)«

simplify ::

simplify (Not p) =

where

pushNot (Not p)
pushNot (p :&: q)

Simplifying a formula: Not inside!

Form -> Form
pushNot (simplify p)

p
pushNot p :|:

pushNot q

pushNot (p :|: q) = pushNot p :&: pushNot q
LIS
Simplifying a formula: Not inside!
simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: q) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

|| & |

m)a

@)«

Simplifying a formula: Not inside!

|| & |

simplify :: Form -> Form

simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: g) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

simplify (p :&: q) = simplify q :&: simplify q

simplify (p :1: q) = simplify p :|: simplify q

Quickcheck

—-— for QuickCheck: test data generator for Form

instance

Arbitrary Form where

arbitrary = sized prop

where

prop
one

prop
one

I

0 =
of [return F,
return T,
1liftM Var arbitraryl]
n|n>0-=
of
return F,
return T,
1iftM Var arbitrary,
1iftM Not (prop (n-1)),
1iftM2 (:&:) (prop(m ‘div‘ 2)) (prop(m ‘div‘ 2)),
1iftM2 (:]:) (prop(m ‘div‘ 2)) (prop(n ‘div‘ 2))]

|| & |

Simplifying a formula: Not inside!

simplify :: Form -> Form

simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: q) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

simplify (p :&: q) = simplify q :&: simplify g

simplify (p :|: @) = simplify p :|: simplify g

simplify p =

prop_simplify p = isSimple(simplify p)

Simplifying a formula: Not inside!

simplify :: Form -> Form

simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: g) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

simplify (p :&: q) = simplify q :&: simplify q

simplify (p :1: q) = simplify p :|: simplify q

simplify p = p

LIS

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

@)«

8.4 Structural induction

|| & |

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a

|| & |

m)a

@)«

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a
Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses P(t1) and P(t2).

|| & |

Example

flat :: Tree a -> [a]
flat Empty = []
flat (Node x tl t2) =
flat t1 ++ [x] ++ flat t2

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Empty = Empty
mapTree f (Node x tl t2) =

Node (f %) (mapTree f t1) (mapTree f t2)

|| & |

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a
Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses P(t1) and P(t2).
(x, t1 and t2 are new variables)

Lemma flat (mapTree f t) = map f (flat t)

Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1)
IH2: flat (mapTree f t2)

map f (flat ti1)
map f (flat t2)

m)a

Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))

= flat (Node (f x) (mapTree f ti1) (mapTree f t2))

@)«

Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl t2))

|| & |

Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x tl t2)) =
map f (flat (Node x tl t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)

|| & |

m)a

@)«

Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))

flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

|| & |

Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

-- by IH1 and IH2
map f (flat (Node x tl t2))

map f (flat t1l ++ [x] ++ flat t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

|| & |

Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

—— by IH1 and IH2

map £ (flat (Node x tl1 t2))
= map f (flat t1 ++ [x] ++ flat t2)

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
th > ... >t, >Ta
such that each t; is either T a or does not contain T

m)a

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
th > ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)
assuming the induction hypotheses P(x;) for all jsit. ;=T a

@)«

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
t1 => ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)

|| & |

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
t1 => ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)

|| & |

Structural induction for Tree

e So far, only batch programs:
given the full input at the beginning,
the full output is produced at the end

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a . .
P property P (t) e Now, interactive programs:

read input and write output
while the program is running

Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses P(t1) and P(t2).

LY LGS
The problem The problem
e Haskell programs are pure mathematical functions: e Haskell programs are pure mathematical functions:
Haskell programs have no side effects
LY

|| & |

An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.

m)a

An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.

@)«

An impure solution

Most languages allow functions to perform 1/0
without reflecting it in their type.

Assume that Haskell were to provide an input function

inputInt :: Int

|| & |

An impure solution

Most languages allow functions to perform 1/0
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:

|| & |

An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:

inputInt - inputlnt = 0

m)a

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

10 a

is the type of (1/0) actions that return a value of type a.

@)«

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

|| & |

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

I0 a

is the type of (I/O) actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char

|| & |

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

10 a

is the type of (1/0) actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char

I0 Char: the type of actions that return a Char

m)a

O

e Type () is the type of empty tuples (no fields).

@)«

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

I0 a
is the type of (I/O) actions that return a value of type a.
Example

Char: the type of pure expressions that return a Char
I0 Char: the type of actions that return a Char

I0 (): the type of actions that return no result value

|| & |

O

e Type () is the type of empty tuples (no fields).
e The only value of type () is (), the empty tuple.

|| & |

m)a

@)«

O

Type () is the type of empty tuples (no fields).
The only value of type () is (), the empty tuple.

Therefore I0 () is the type of actions
that return the dummy value ()

Basic actions

getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

putChar :: Char -> I0 ()

Basic actions

e getChar :: IO Char

|| & |

Basic actions

e getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

e putChar :: Char -> I0 ()

Writes a Char to standard output,
and returns no result

e return :: a -> I0 a

|| & |

Basic actions Sequencing: do

* getChar :: I0 Char A sequence of actions can be combined into a single action

Reads a Char from standard input, with the keyword do
echoes it to standard output,
and returns it as the result

e putChar :: Char -> I0 ()

Writes a Char to standard output, get2 :: I0 7
and returns no result

Example

e return :: a -> I0 a

Performs no action,
just returns the given value as a result

LGS LGS
Sequencing: do Sequencing: do
A sequence of actions can be combined into a single action A sequence of actions can be combined into a single action
with the keyword do with the keyword do
Example Example
get2 :: I0 7 get2 :: I0 7
get2 = do x <- getChar get2 = do x <- getChar -- result is named x

getChar

=)@ (m)@]

Example
get2 10 7
get2 = do x <- getChar -- result is named x
getChar —-— result is ignored
y <- getChar
return (x,y)
LGS

Sequencing: do

A sequence of actions can be combined into a single action
with the keyword do

General format (observe layout!):

do ap

dn

where each a; can be one of

General format (observe layout!):

do a;

EN

General format (observe layout!):

do a;

dn

where each a; can be one of
e an action
Effect: execute action
e x <- action
Effect: execute action :: I0 a, give result the name x :: a

e let x = expr

General format (observe layout!):

do ap

dn

where each a; can be one of

e an action
Effect: execute action

e x <- action

Effect: execute action ::

e let x = expr

Effect: give expr the name x

I0 a, give result the name x :: a

Lazy: expr is only evaluated when x is needed!

Write a string to standard output:

putStr ::
putStr []

String -> I0 ()

return ()

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O

putStr [] = return ()

putStr (c:cs) do putChar c
putStr cs

Derived primitives

Derived primitives

Write a string to standard output:

putStr :: String -> I0 ()

putStr [] = return ()
putStr (c:cs) = do putChar c
putStr cs

Write a line to standard output:

putStrLn :: I0 ()

Read a line from standard input:

getlLine :: IO String

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O

putStr [] = return ()
putStr (c:cs) = do putChar ¢
putStr cs

Write a line to standard output:

putStrLln :: I0 ()
putStrln cs = putStr (cs ++ ’\n’)

Read a line from standard input:

getLine :: I0 String
getlLine = do x <- getChar

Read a line from standard input:

getlLine :: IO String
getLine = do x <- getChar
if x == ’\n’ then

Read a line from standard input:

getlLine :: IO String
getlLine = do x <- getChar

if x == ’\n’ then
return []
else

do xs <- getLine
return (x:xs)

Actions are normal Haskell values and can be combined as usual,

for example with if-then-else.

Read a line from standard input:

getLine :: I0 String
getlLine = do x <- getChar

if x == ’\n’ then
return []
else

do xs <- getLine
return (x:xs)

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O

Example Example

Prompt for a string and display its length: Prompt for a string and display its length:
strlen :: IO () strlen :: I0 ()
strLen = do putStr "Enter a string: "

Example How to read other types

Prompt for a string and display its length:

strlen :: I0 ()
strLen = do putStr "Enter a string: "
xs <- getline

How to read other types

Input string and convert

m)a

How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a

Most predefined types are in class Read.

@)«

How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a

|| & |

How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a

Most predefined types are in class Read.

Example:

getInt :: I0 Integer
getInt = do xs <- getline
return (read xs)

|| & |

Case study

The game of Hangman

=&

in file hangman.hs

®f Adobe Reader File

Edit View Window Help & W @ D <> « § <2 4

@1 Tue 16:50 Tobias Nipkow Q :=

«| slides.pdf

ER NN N =R ==

(1455 of 1556) |

‘ Bookmarks

M

R

@ v
[organisatorisches

The Idea
[P Basic Haskell
[uists
[P proots

[P Type Classes

P wvo

f [Functional Programming:

[P Higher-Order Functions

[P Algebraic =1=data Types

Does vals construct all valuations?

prop_valsl xs =
length(vals xs) == 2 ~ length xs
prop_vals2 xs =
distinct (vals xs)

distinct :: Eq a => [a] -> Bool

distinct [] = True
distinct (x:xs) = not(elem x xs) && distinct xs

Demo

Tools | Sign écommem

.—i Terminal Shell Edit View Window Help B ¢» W @ O <> & <7 <& @EF Tue 16:50 Tobias Nipkow Q = Pj T Shell Edit View Window Help M ¢y Wy @ 4D <> ¢ + < & @& Tue 16:51 Tobias Nipkow Q :i=

8 00 || Code — ghc — 7624 o 8 0060 || Code — ghc — 76x24 ol
] B

|/ I/ |

| |

| |

| |

| |

Word: ---e-- Word: --le--

Missed: Missed: s

e s

=&

=&

® Terminal Shell

View Window Help

Fom@D >y e

@1 Tue 16:51 Tobias Nipkow Q

[@00

|| Code — ghc — 76x24

I/ 1
I @

Word: --le--
Missed: snh
n

) B o B @ D <> ¢ f <2 4 @I Tue 16:53 Tobias Nipkow Q

% nipkow — bash — 80x24

FMI_EG.pdf Physical

cover0.pdf

ACF_AllDocs thy Abstractpdf

Bachelor Thesis
Topic Propo:

BK
old:..lholz.pdf

Transcript of
Records.pdf

Last login: Tue Dec 18 12:54:34 on thyspa2
lapbroy188:~ nipkowf telnet localhost

Trying ::...

telnet: connect to address ::i: Comnection refused
Trying 127.8.8.1...

Connected to localhost.

Escope character is 'A]'.

Connection closed by foreign host.

lapbroy188:~ nipkow telnet localhost 9888

Trying ::...

Connected to localhost.

Escope character is 'A]'.

dhird

got ashdskhj
quit

goodbye!

reeqgction closed by foreign host.

. @\ royles:~ nipkowd [|

MUC-GVA.pdf

E

lapbroy100 HD

g

Simone
demonstr. ul

eBer-13-32545
e um ein._ 5

03_Einfiihrung
in die Inf..atik 2.pdf

Abizeugnis.pdf

_acknowled
nt_MINGA.PDF

Bachelor
Informati...tems.PDF

