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Example: Or (Var "p") (Not(Var "p"))
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data Form = F | T
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| And Form Form
| Or Form Form
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type Name

data Form

String

FIT

Var Name

Not Form

And Form Form
Or Form Form

deriving Eq

Example: Or (Var "p") (Not(Var "p"))

More readable: symbolic infix constructors, must start with :

data Form

F | T | Var Name

Not Form
Form :&: Form
Form :|: Form

deriving Eq

Now: Var "p" :|: Not(Var "p")

Pretty printing

par :: String -> String
par s = |r(|| ++ s ++ |I)II
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par :: String -> String
par g = |I(Il ++ s ++ |r)|l

instance Show Form where

Pretty printing

par :: String -> String
par s = |r(|| ++ s ++ |I)II

instance Show Form where
show F = "F"
show T = "T"
show (Var x)
show (Not p)

X

Pretty printing

par("~" ++ show p)
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par :: String -> String
par g = |I(Il ++ s ++ |r)|l

instance Show Form where
show F = "F"
show T = "T"
show (Var x) X
show (Not p) = par("™" ++

Pretty printing

show p)

show (p :&: q) = par(show p ++ " & " ++ show q)

par :: String -> String
par s = |r(|| ++ s ++ |I)II

instance Show Form where
show F = "F"
show T = "T"
show (Var x) X
show (Not p) = par("™" ++

Pretty printing

show p)

show (p :&: q) = par(show p ++ " & " ++ show q)

show (p :|: q)

par(show p ++ " | " ++ show q)




Pretty printing

par :: String -> String
par g = n(u ++ s ++ |r)||

instance Show Form where

show F = "F"

show T = "T"

show (Var x) = x

show (Not p) = par("~" ++ show p)
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Form is the syntax of boolean formulas, not their meaning:
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Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:

Not (Not T) and T mean the same but are different:
Not(Not T) /=T
What is the meaning of a Form?

Its valuel?

But what is the value of Var "p" ?
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-— Wertebelegung
type Valuation =

[(Name,Bool)]

type Valuation =

eval ::
eval _ F = False
eval T = True

eval v (Var x) =

[(Name,Bool)]

Valuation -> Form -> Bool

the (lookup x V)

where

the(Just b) = b

type Valuation =

Valuation
F = False

eval ::
eval _
eval _ T = True
eval v (Var x)
(Not p)

eval v

eval :: Valuation -> Form -> Bool eval :: Valuation -> Form -> Bool
eval _ F = False eval _ F = False
eval _ T = True eval _ T = True
eval v (Var x) = the(lookup x V)
ma &
-— Wertebelegung -— Wertebelegung

[(Name,Bool)]

-> Form -> Bool

the (lookup x V)
not(eval v p)

where

the(Just b) = b
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type Valuation = [(Name,Bool)]

-— Wertebelegung

type Valuation = [(Name,Bool)]

type Valuation = [(Name,Bool)]

eval :: Valuation -> Form -> Bool

eval _ F = False

eval _ T = True

eval v (Var x) = the(lookup x v) where
eval v (Not p) = not(eval v p)

eval v (p :&: q) = eval v p && eval v q
eval v (p :l: q) =eval vp || eval v q

> eval [("a",False), ("b",False)]
(Not(Var "a") :%: Not(Var "b"))

the(Just b) = b

eval :: Valuation -> Form -> Bool eval :: Valuation -> Form -> Bool
eval _ F = False eval _ F = False
eval _ T = True eval _ T = True
eval v (Var x) = the(lookup x v) where the(Just b) =b eval v (Var x) = the(lookup x v) where the(Just b) =D
eval v (Not p) = not(eval v p) eval v (Not p) = not(eval v p)
eval v (p :&: q) = eval v p && eval v q eval v (p :&: q) = eval v p && eval v q
eval v (p :l: q) =eval vp || eval v q
LIS E& 1| valuations for a given list of variable names:
-- Wertebelegung vals :: [Name] -> [Valuation]
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vals :: [Name] -> [Valuation] vals :: [Name] -> [Valuation]
vals []1 = [[]1] vals [1 = [[1]
vals (x:xs) = [ (x,False):v | v <- vals xs ] ++ vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ] [ (x,True):v | v <- vals xs ]
vals ["b"] vals ["b"]
= [("b",False):v | v <- vals [[]]] ++

= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

[("b",True):v | v <- vals [[]1]]
= [("b",False):[1] ++ [("b",True):[]1]
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."ra-:l-S [llbll]

= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[1] ++ [("b",True):[]]

= [("b",False), ("b",True)]

EI% A\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[]]
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vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ]
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= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[1] ++ [("b",True):[]]

= [("b",False), ("b",True)]

vals [llall’llbll]
= [("a”,False):v I v <- vals [”b"]] 44
[("&” ,True) v I v <- vals [”b"]]
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vals :: [Name] -> [Valuation]

vals []1 = [[]]

vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ]

vals ["b"]

= [("b",False):v | v <- vals [[1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[1] ++ [("b",True):[]1]

= [("b",False), ("b",True)]

vals ["a","b"]

= [("a",False):v | v <- vals ["D"]] ++
[("a",True):v | v <- vals ["b"]]

= [[("a",False), ("b",False)] ++ [("a",False),("b",True)] +
[[("a",True), ("b",False)] ++ [("a",True), ("b",True)]
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vals :: [Name] -> [Valuation]

vals [1 = [[1]

vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ]

ValS [llbll]

= [("b",False):v | v <- vals [[]1]] ++
[("b",True):v | v <- vals [[]1]]

= [("b",False):[]] ++ [("b",True):[]1]

= [("b",False), ("b",True)]

vals ["a","b"]

= [("a",False):v | v <- vals ["b"]] ++
[("a",True):v | v <- vals ["b"]]

= [[("a",False), ("b" False)] ++ [("a",False),("b",True)] +
[[("a",True), ("b",False)] ++ [("a",True), ("b",True)]

Does vals construct all valuations?

RS

Does vals construct all valuations?

prop_valsl xs =
length(vals xs) ==

Does vals construct all valuations?

prop_valsl xs =

length(vals xg) == 2 ° length xs




Does vals construct all valuations?

prop_valsl xs =
length(vals xs) == 2 ~ length xs
prop_vals2 xs =
distinct (vals xs)

distinct Eq a => [a] -> Bool
distinct [] = True
distinct (x:xs) = not(elem x xs) && distinct xs

Does vals construct all valuations?

prop_valsl xs =
length(vals xs) == 2 "~ length xs
prop_vals2 xs =
distinct (vals xs)

distinct Eq a => [a] -> Bool
distinct [] = True
distinct (x:xs) = not(elem x xs) && distinct xs
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*Form> quickCheck prop_valsl
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Loading package time-1.4 ... linking ... done. ]_ength(vals Xxs) == 2 ° length xs

prop_vals2’ xs =
length xs <= 10 ==> distinct (vals xs)
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Restrict size of test cases:

prop_valsl’ xs =
length xs <= 10 ==>
length(vals xs) == 2 " length xs

prop_vals2’ xs =
length xs <= 10 ==> distinct (vals xs)
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Satisfiable and tautology

Form -> Bool

satisfiable p = or [eval v p | v <- vals(vars p)]

Satisfiable and tautology

satisfiable :: Form -> Bool

satisfiable ::

Satisfiable and tautology

Form -> Bool

satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form -> Bool

tautology = not

. satisfiable . Not




Satisfiable and tautology
satisfiable :: Form -> Bool
satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form —-> Bool
tautology = not . satisfiable . Not

vars :: Form -> [Name]

m)a

pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

@)«

Satisfiable and tautology

satisfiable :: Form -> Bool
satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form -> Bool
tautology = not . satisfiable . Not

vars :: Form -> [Name]

vars F = []

vars T = []

vars (Var x) [x]

vars (Not p) vars p

vars (p :&: q) = nub (vars p ++ vars q)
vars (p :|1: q) = nub (vars p ++ vars q)

|| & |

Simplifying a formula: Not inside?

|| & |




Simplifying a formula: Not inside? Simplifying a formula: Not inside?

isSimple :: Form -> Bool isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p)
LGS LI(ES
Simplifying a formula: Not inside? Simplifying a formula: Not inside?
isSimple :: Form -> Bool isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p) isSimple (Not p) = not (isOp p)
where where
isOp (Not p) = True isOp (Not p) = True
isOp (p :&: q@) = True isOp (p :&: q) = True
isOp (p :1: @) = True isOp (p :1: @ = True
isOp p = False

=)@ (m)@]




Simplifying a formula: Not inside?

isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p)
where
isOp (Not p) = True
isOp (p :&: q@) = True
isOp (p :1: @) = True
isOp p = False
isSimple (p :&: q) = 1isSimple p && isSimple q
isSimple (p :l1: @) = 1isSimple p && isSimple q
isSimple p = True
LIS

Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where

pushNot (Not p) =
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Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
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Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
LGS




Simplifying a formula: Not inside!

simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where

pushNot (Not p)
pushNot (p :&: q)

P

m)a

Simplifying a formula: Not inside!

Form -> Form
pushlNot (simplify p)

simplify ::
simplify (Not p) =
where
pushNot (Not p)
pushNot (p :&: q)
pushNot (p :|: q)
pushNot p =

p
pushNot p :|: pushNot g

pushNot p :&: pushNot g

@)«

simplify ::

simplify (Not p) =

where

pushNot (Not p)
pushNot (p :&: q)

Simplifying a formula: Not inside!

Form -> Form
pushNot (simplify p)

p
pushNot p :|:

pushNot q

pushNot (p :|: q) = pushNot p :&: pushNot q
LIS
Simplifying a formula: Not inside!
simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: q) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

|| & |
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Simplifying a formula: Not inside!
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simplify :: Form -> Form

simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: g) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

simplify (p :&: q) = simplify q :&: simplify q

simplify (p :1: q) = simplify p :|: simplify q

Quickcheck

—-— for QuickCheck: test data generator for Form

instance

Arbitrary Form where

arbitrary = sized prop

where

prop
one

prop
one

I

0 =
of [return F,
return T,
1liftM Var arbitraryl]
n|n>0-=
of
return F,
return T,
1iftM Var arbitrary,
1iftM Not (prop (n-1)),
1iftM2 (:&:) (prop(m ‘div‘ 2)) (prop(m ‘div‘ 2)),
1iftM2 (:]:) (prop(m ‘div‘ 2)) (prop(n ‘div‘ 2))]
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Simplifying a formula: Not inside!

simplify :: Form -> Form

simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: q) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

simplify (p :&: q) = simplify q :&: simplify g

simplify (p :|: @) = simplify p :|: simplify g

simplify p =

prop_simplify p = isSimple(simplify p)




Simplifying a formula: Not inside!

simplify :: Form -> Form

simplify (Not p) = pushNot (simplify p)
where
pushNot (Not p) = p
pushNot (p :&: g) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p

simplify (p :&: q) = simplify q :&: simplify q

simplify (p :1: q) = simplify p :|: simplify q

simplify p = p

LIS

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

@)«

8.4 Structural induction
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Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a
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Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a
Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses P(t1) and P(t2).

|| & |

Example

flat :: Tree a -> [a]
flat Empty = []
flat (Node x tl t2) =
flat t1 ++ [x] ++ flat t2

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Empty = Empty
mapTree f (Node x tl t2) =

Node (f %) (mapTree f t1) (mapTree f t2)
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Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a
Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses P(t1) and P(t2).
(x, t1 and t2 are new variables)

Lemma flat (mapTree f t) = map f (flat t)




Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1)
IH2: flat (mapTree f t2)

map f (flat ti1)
map f (flat t2)
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Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))

= flat (Node (f x) (mapTree f ti1) (mapTree f t2))
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Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl t2))
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Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x tl t2)) =
map f (flat (Node x tl t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
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Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))

flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)
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Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

-- by IH1 and IH2
map f (flat (Node x tl t2))

map f (flat t1l ++ [x] ++ flat t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)
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Lemma flat (mapTree f t) = map f (flat t)
Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

—— by IH1 and IH2

map £ (flat (Node x tl1 t2))
= map f (flat t1 ++ [x] ++ flat t2)

The general (regular) case

data T a = ...

Assumption: T is a regular data type:




The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
th > ... >t, >Ta
such that each t; is either T a or does not contain T
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The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
th > ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)
assuming the induction hypotheses P(x;) for all jsit. ;=T a
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The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
t1 => ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)
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The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
t1 => ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)
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Structural induction for Tree

e So far, only batch programs:
given the full input at the beginning,
the full output is produced at the end

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a . .
P property P (t) e Now, interactive programs:

read input and write output
while the program is running

Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses P(t1) and P(t2).

LY LGS
The problem The problem
e Haskell programs are pure mathematical functions: e Haskell programs are pure mathematical functions:
Haskell programs have no side effects
LY
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An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.
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An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.
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An impure solution

Most languages allow functions to perform 1/0
without reflecting it in their type.

Assume that Haskell were to provide an input function

inputInt :: Int
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An impure solution

Most languages allow functions to perform 1/0
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:
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An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int

Now all functions potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:

inputInt - inputlnt = 0

m)a

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

10 a

is the type of (1/0) actions that return a value of type a.
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The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:
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The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

I0 a

is the type of (I/O) actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char
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The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

10 a

is the type of (1/0) actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char

I0 Char: the type of actions that return a Char

m)a

O

e Type () is the type of empty tuples (no fields).
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The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

I0 a
is the type of (I/O) actions that return a value of type a.
Example

Char: the type of pure expressions that return a Char
I0 Char: the type of actions that return a Char

I0 (): the type of actions that return no result value

|| & |

O

e Type () is the type of empty tuples (no fields).
e The only value of type () is (), the empty tuple.

|| & |




m)a

@)«

O

Type () is the type of empty tuples (no fields).
The only value of type () is (), the empty tuple.

Therefore I0 () is the type of actions
that return the dummy value ()

Basic actions

getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

putChar :: Char -> I0 ()

Basic actions

e getChar :: IO Char

|| & |

Basic actions

e getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

e putChar :: Char -> I0 ()

Writes a Char to standard output,
and returns no result

e return :: a -> I0 a
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Basic actions Sequencing: do

* getChar :: I0 Char A sequence of actions can be combined into a single action

Reads a Char from standard input, with the keyword do
echoes it to standard output,
and returns it as the result

e putChar :: Char -> I0 ()

Writes a Char to standard output, get2 :: I0 7
and returns no result

Example

e return :: a -> I0 a

Performs no action,
just returns the given value as a result

LGS LGS
Sequencing: do Sequencing: do
A sequence of actions can be combined into a single action A sequence of actions can be combined into a single action
with the keyword do with the keyword do
Example Example
get2 :: I0 7 get2 :: I0 7
get2 = do x <- getChar get2 = do x <- getChar -- result is named x

getChar

=)@ (m)@]




Example
get2 10 7
get2 = do x <- getChar -- result is named x
getChar —-— result is ignored
y <- getChar
return (x,y)
LGS

Sequencing: do

A sequence of actions can be combined into a single action
with the keyword do

General format (observe layout!):

do ap

dn

where each a; can be one of

General format (observe layout!):

do a;

EN

General format (observe layout!):

do a;

dn

where each a; can be one of
e an action
Effect: execute action
e x <- action
Effect: execute action :: I0 a, give result the name x :: a

e let x = expr




General format (observe layout!):

do ap

dn

where each a; can be one of

e an action
Effect: execute action

e x <- action

Effect: execute action ::

e let x = expr

Effect: give expr the name x

I0 a, give result the name x :: a

Lazy: expr is only evaluated when x is needed!

Write a string to standard output:

putStr ::
putStr []

String -> I0 ()

return ()

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O

putStr [] = return ()

putStr (c:cs) do putChar c
putStr cs

Derived primitives




Derived primitives

Write a string to standard output:

putStr :: String -> I0 ()

putStr [] = return ()
putStr (c:cs) = do putChar c
putStr cs

Write a line to standard output:

putStrLn :: I0 ()

Read a line from standard input:

getlLine :: IO String

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O

putStr [] = return ()
putStr (c:cs) = do putChar ¢
putStr cs

Write a line to standard output:

putStrLln :: I0 ()
putStrln cs = putStr (cs ++ ’\n’)

Read a line from standard input:

getLine :: I0 String
getlLine = do x <- getChar




Read a line from standard input:

getlLine :: IO String
getLine = do x <- getChar
if x == ’\n’ then

Read a line from standard input:

getlLine :: IO String
getlLine = do x <- getChar

if x == ’\n’ then
return []
else

do xs <- getLine
return (x:xs)

Actions are normal Haskell values and can be combined as usual,

for example with if-then-else.

Read a line from standard input:

getLine :: I0 String
getlLine = do x <- getChar

if x == ’\n’ then
return []
else

do xs <- getLine
return (x:xs)

Derived primitives

Write a string to standard output:

putStr :: String -> I0 O




Example Example

Prompt for a string and display its length: Prompt for a string and display its length:
strlen :: IO () strlen :: I0 ()
strLen = do putStr "Enter a string: "

Example How to read other types

Prompt for a string and display its length:

strlen :: I0 ()
strLen = do putStr "Enter a string: "
xs <- getline




How to read other types

Input string and convert
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How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a

Most predefined types are in class Read.
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How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a
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How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a

Most predefined types are in class Read.

Example:

getInt :: I0 Integer
getInt = do xs <- getline
return (read xs)
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